ORGANIC
LETTERS
2006
Vol. 8, No. 16
3585-3587
Efficient Pyrrole Synthesis Using Double
Nucleophilic Addition to
r,â-Unsaturated Imines with Plural
Nucleophiles
Makoto Shimizu,* Atsushi Takahashi, and Shiho Kawai
Department of Chemistry for Materials, Graduate School of Engineering, Mie
UniVersity, Tsu, Mie 514-8507, Japan
Received June 26, 2006
ABSTRACT
2,3,5-Trisubstituted pyrroles were prepared in a regioselective manner using the double nucleophilic addition of
r,r-dialkoxy ketene silyl
acetals and ketene sily thioacetals or trimethylsilyl cyanide to
r,â-unsaturated imines followed by acid-promoted cyclization and oxidation
with DDQ. Using this methodology an imidazole glycerol phosphate dehydratase inhibitor (IGPDI) possessing a monopyrrole aldehyde moiety
was synthesized.
Widespread existence of biologically important pyrrole
derivatives1 coupled with the need to construct such a
skeleton in an efficient manner prompted us to explore a
new methodology.2 A potentially effective approach to
construct a pyrrole ring involves cyclization of γ-amino
carbonyl compounds followed by dehydrogenation. For the
synthesis of γ-amino carbonyl compounds, crucial intermedi-
ates in this strategy, nucleophilic addition to γ-oxoimines
constitutes a straightforward pathway. However, difficulty
has often been encountered for the synthesis of γ-oxoimines
due to susceptibility to hydrolysis and/or isomerization.3 For
circumvention of such a drawback of isolating relatively
unstable imine intermediates as well as use of an operation-
ally simple experimental procedure, we have recently
introduced a double nucleophilic addition reaction to R,â-
unsaturated imines.4 When R,R-dialkoxy ketene silyl acetal,
an acyl anion equivalent, is used as the first nucleophile,
this methodology offers a facile synthetic route to γ-amino
carbonyl synthons. This paper describes a straightforward
(1) (a) Annoura, H.; Tatsuoka, T. Tetrahedron Lett. 1995, 36, 413. (b)
Fu¨rstner, A.; Weintritt, H. J. Am. Chem. Soc. 1998, 120, 2817. (c) Boger,
D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem.
Soc. 1999, 121, 54. (d) Stien, D.; Anderson, G. T.; Chase, C. E.; Koh,
Y.-h.; Weinreb, S. M. J. Am. Chem. Soc. 1999, 121, 9574. (e) Liu, J.-H.;
Yang, Q.-C.; Mak, T. C. W.; Wong, H. N. C. J. Org. Chem. 2000, 65,
3587. (f) Adamczyk, M.; Jonson, D. D.; Reddy, R. E. J. Org. Chem. 2001,
66, 11. (g) Kreipl, A. T.; Reid C.; Steglich, W. Org. Lett. 2002, 4, 3287.
(h) Kim, J. T.; Gevorgyan, V. Org. Lett. 2002, 4, 4697. (i) Hoffmann, H.;
Lindel, T. Synthesis 2003, 1753. (j) Fu¨rstner, A. Angew. Chem., Int. Ed.
2003, 42, 3582.
(2) (a) Gao, Y.; Shirai, M.; Sato, F. Tetrahedron Lett. 1996, 37, 7787.
(b) Jolivet-Fouchet, S.; Hamelin, J.; Texier-Boullet, F.; Toupet, L.; Jacquault,
P. Tetrahedron 1998, 54, 4561. (c) Tsutsui, H.; Narasaka, K. Chem. Lett.
1999, 45. (d) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 2849.
(e) Shiraishi, H.; Nishitani, T.; Nishihara, T.; Sakaguchi, S.; Ishii, Y.
Tetrahedron 1999, 55, 13957. (f) Periasamy, M.; Srinivas, G.; Bharathi, P.
J. Org. Chem. 1999, 64, 4204. (g) Kel’in, A. V.; Sromek, A. W.; Gevorgyan,
V. J. Am. Chem. Soc. 2001, 123, 2074. (h) Quiclet-Sire, B.; Wendeborn,
F.; Zard, S. Z. Chem. Commun. 2002, 2214. (i) Ranu, B. C.; Dey, S. S.
Tetrahedron Lett. 2003, 44, 2865. (j) Ramanathan, B.; Keith, A. J.;
Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957. (k) Bharadwaj, A.
R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465.
(3) (a) Stadnichuk, M. D.; Khramchikhin, A. V.; Piterskaya, Y. L.;
Suvorova, I. V. Russ. J. Gen. Chem. 1999, 69, 593. (b) Shimizu, M.; Ogawa,
T.; Nishi, T. Tetrahedron Lett. 2001, 42, 5463.
10.1021/ol0615634 CCC: $33.50
© 2006 American Chemical Society
Published on Web 07/08/2006