Published on Web 07/04/2006
From Armchair to Zigzag Peripheries in Nanographenes
Marcel Kastler, Jochen Schmidt, Wojciech Pisula, Daniel Sebastiani, and
Klaus Mu¨llen*
Contribution from the Max-Planck-Institute for Polymer Research, Postfach 3148,
D-55021 Mainz, Germany
Received March 24, 2006; E-mail: muellen@mpip-mainz.mpg.de
Abstract: Synthetic concepts toward the synthesis of large, not-fully benzenoid polycyclic aromatic
hydrocarbons (PAHs), decorated with phase-forming and solubilizing n-dodecyl chains, are presented based
on the intramolecular cyclodehydrogenation reaction of suitable oligophenylene precursors. The formal
addition of successive C2 units into the armchair bays of the parent hexa-peri-hexabenzocoronene extends
the aromatic system and leads to PAHs with a partial zigzag periphery. This variation of the nature of the
periphery, symmetry, size, and shape has a distinct impact upon the electronic properties and the
organization into columnar superstructures. Both computational and experimental UV/vis spectra, which
are in good agreement, emphasize the dependence of the characteristic bands R, p, and â upon the overall
size and symmetry of the PAHs. While the number and the substitution patterns of attached n-dodecyl
chains do not influence the electronic properties, the thermal behavior and supramolecular organization
are strongly influenced, which has been elucidated with differential scanning calorimetry (DSC) and 2D
wide-angle X-ray diffractometry (2D-WAXS) on mechanically aligned samples. This study provides valuable
insight into the future design of semiconducting materials based on extended PAHs.
columnar mesophases.8 The intermolecular π-contact allows
Introduction
charge carrier migration9 between the stacked discotic molecules,
Polycyclic aromatic hydrocarbons (PAHs) constitute a large
and diverse class of organic molecules.1 The major natural
source on earth for PAHs is crude oil, coal, and oil shale.2 The
spectroscopy of interstellar material even proved the abundance
of large PAHs, which are in fact the largest, detected molecules
in space.3 Some PAHs are widespread environmental pollutants
and relatively potent carcinogens.4
Clar proposed that the properties of PAHs could be best
understood in terms of localization of the aromatic sextets
present in the molecules.5 Fully benzenoid PAHs can formally
be drawn only with Kekule´ rings without isolated “double”
bonds and are known to be kinetically very stable, unreactive
substances. Two important examples of that class of compounds
are triphenylene6 and hexa-peri-hexabenzocoronene (HBC).7
When substituted appropriately, many PAHs form very stable
which opens the possibility to implement these structures in
organic electronics, such as field-effect transistors, hole-injecting
layers, or photovoltaic devices.7,10 Recently, we presented a
concept to synthesize a series of large, all-benzenoid PAHs with
a broad range of sizes and shapes.11
Tetracene, a constitutional isomer of triphenylene, differs
distinctly in its properties: lower resonance energy,12 a lower
ionization potential,13 a smaller HOMO-LUMO gap,13 and
thermally far less stability.5 This emphasizes inter alia the
dependence of properties upon the nature of the periphery,
symmetry, and shape.14 Dias15 discussed different perimeters
for PAHs, where the two most prominent, zigzag and armchair
edge, are shown in Figure 1.
Graphite and many carbonaceous materials consist primarily
of large polyaromatic molecules of varying size, shape, and
periphery. An understanding of the chemistry of graphite and
(1) (a) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.;
Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500-1503. (b)
Harvey, R. G. Curr. Org. Chem. 2004, 8, 303-323. (c) Xiao, S. X.; Myers,
M.; Miao, Q.; Sanaur, S.; Pang, K. L.; Steigerwald, M. L.; Nuckolls, C.
Angew. Chem., Int. Ed. 2005, 44, 7390-7394.
(2) (a) Lehmann, E.; Auffarth, J.; Hager, J.; Rentel, K. H.; Altenburg, H. Staub
Reinhalt Luft 1986, 46, 128-131. (b) Strewe, K.; Neumann, H. J. Erdol
Kohle Erdgas, Petrochem. 1983, 36, 231-231. (c) Sullivan, R. F.;
Boduszynski, M. M.; Fetzer, J. C. Energy Fuels 1989, 3, 603-612.
(3) (a) Duley, W. W.; Williams, D. A. Mon. Not. R. Astron. Soc. 1986, 219,
859-864. (b) Lovas, F. J.; McMahon, R. J.; Grabow, J. U.; Schnell, M.;
Mack, J.; Scott, L. T.; Kuczkowski, R. L. J. Am. Chem. Soc. 2005, 127,
4345-4349.
(4) Harvey, R. G.; Dai, Q.; Ran, C. Z.; Lim, K.; Blair, I.; Penning, T. M.
Polycycl. Aromat. Compd. 2005, 25, 371-391.
(5) Clar, E. The Aromatic Sextett; John Wiley & Sons: London, 1972.
(6) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer,
K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141-
143.
(8) (a) de Halleux, V.; Calbert, J. P.; Brocorens, P.; Cornil, J.; Declercq, J. P.;
Bredas, J. L.; Geerts, Y. AdV. Funct. Mater. 2004, 14, 649-659. (b)
Wasserfallen, D.; Kastler, M.; Pisula, W.; Hofer, W. A.; Fogel, Y.; Wang,
Z. H.; Mu¨llen, K. J. Am. Chem. Soc. 2006, 128, 1334-1339. (c) Kastler,
M.; Pisula, W.; Wasserfallen, D.; Pakula, T.; Mu¨llen, K. J. Am. Chem.
Soc. 2005, 127, 4286-4296. (d) Zimmermann, S.; Wendorff, J. H.; Weder,
C. Chem. Mater. 2002, 14, 2218-2223.
(9) (a) van de Craats, A. M.; Warman, J. M.; Fechtenko¨tter, A.; Brand, J. D.;
Harbison, M. A.; Mu¨llen, K. AdV. Mater. 1999, 11, 1469-1472. (b) Meijer,
E. W.; Schenning, A. Nature 2002, 419, 353-354.
(10) Schmidt-Mende, L.; Fechtenko¨tter, A.; Mu¨llen, K.; Moons, E.; Friend, R.
H.; MacKenzie, J. D. Science 2001, 293, 1119-1122.
(11) Mu¨ller, M.; Ku¨bel, C.; Morgenroth, F.; Iyer, V. S.; Mu¨llen, K. Carbon
1998, 36, 827-831.
(12) Hess, B. A.; Schaad, L. J. J. Am. Chem. Soc. 1971, 93, 305-310.
(13) Biermann, D.; Schmidt, W. J. Am. Chem. Soc. 1980, 102, 3173-3181.
(14) Dias, J. R. Polycycl. Aromat. Compd. 2005, 25, 113-127.
(15) Dias, J. R. J. Chem. Inf. Comput. Sci. 2005, 45, 562-571.
(7) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.;
Sirringhaus, H.; Pakula, T.; Mu¨llen, K. AdV. Mater. 2005, 17, 684-689.
9
9526
J. AM. CHEM. SOC. 2006, 128, 9526-9534
10.1021/ja062026h CCC: $33.50 © 2006 American Chemical Society