Photoresponsive Helices
FULL PAPER
crease in the CD signal,indicating depopulation of the heli-
cal conformation,while thermal reversion resulted in com-
plete recovery of the initial CD signal intensity,indicating
that the original complete population of the helical back-
bone conformation had been reinstated. The presence of a
well-developed isodichroic point at 295 nm suggested a
clean conversion between both conformations (Figure 14).
The composition of the mixture in the 24cis/24trans PSS (
ꢁ40%) can be directly deduced from the ratio of the CD
signals.[11] Kinetic analysis of the data at 258C provides the
Experimental Section
For details of the general methods,optical spectroscopy,irradiation ex-
periments,derivation of the rate constants for thermal cis!trans isomeri-
zation,and syntheses,please see the Supporting Information.
Acknowledgements
rate of the thermal cis!trans isomerization kcis!trans ꢁ3.8
Christian Kaiser is greatly acknowledged for synthesizing the chiral side
chains. The authors thank Dr. Eckhard Bill (MPI for Bioinorganic Chem-
istry,Mülheim/Ruhr) for the extensive use of the CD spectrometer. Gen-
erous support by the Sofja Kovalevskaja Program of the Alexander von
Humboldt Foundation sponsored by the Federal Ministry of Education
and Research and the Program for Investment in the Future (ZIP) of the
German Government,the German Research Foundation (DFG: SFB
448,HE 3675/2-1),and the Max Planck Society (MPG) is gratefully ac-
knowledged.
ꢂ1
10ꢂ5 s ,corresponding to a half-life of t = ꢁ5 h and an acti-
1
2
vation energy of DG° ꢁ23.5 kcalmolꢂ1,typical for azoben-
zene-cored macromolecules in solution.[28]
[1] D. G. Hill,M. J. Mio,R. B. Prince,T. S. Hughes,J. S. Moore,
Chem.
Rev. 2001, 101,3893–4012.
[2] a) Photochromism—Molecules and Systems (Eds.: H. Dürr,H.
Bouas-Laurent),Elsevier,Amsterdam, 2003; b) Molecular Switches
(Ed.: B. L. Feringa),Wiley-VCH,Weinheim, 2001; c) special Issue:
“Photochromism: Memories and Switches”, Chem. Rev. 2000, 100,
1683–1890; d) Organic Photochromic and Thermochromic Com-
pounds (Eds.: J. C. Crano,R. J. Guglielmetti),Kluwer Academic/
Plenum Publishers,New York, 1999; e) Organic Photochromes (Ed.:
A. V. El’tsov),Consultants Bureau,New York, 1990.
[3] a) V. Balzani,A. Credi,M. Venturi,
Molecular Devices and Ma-
chines: Journey into the Nanoworld,Wiley-VCH,Weinheim,
A
2003; b) S. Hecht, Small 2005, 1,26–29.
[4] O. Pieroni,A. Fissi,N. Angelini,F. Lenci, Acc. Chem. Res. 2001, 34,
9–17.
Figure 14. CD spectra obtained during thermal cis!trans isomerization
of 24 in H2O in CH3CN (60 vol%,9.510 ꢂ6 m) at 228C (starting at PSS: t
= 0,1.5,3,4.5,7.5,10,48,53,72 h).
[5] G. A. Woolley, Acc. Chem. Res. 2005, 38,486–493.
[6] a) F. Ciardelli,D. Fabbri,O. Pieroni,A. Fissi,
J. Am. Chem. Soc.
1989, 111,3470–3472; b) for a very recent example of a photo- and
thermoresponsive spiropyran-appended peptide tetradecamer,see:
Conclusion
K. Fujimoto,M. Amano,Y. Horibe,M. Inouye,
285–287.
Org. Lett. 2006, 8,
Through a rigorous synthetic effort involving several design
cycles,we have been able to demonstrate the feasibility of
using light as an external stimulus to control helix–coil tran-
sitions in helically folding amphiphilic OmPEs. Although
our initial approach targeting turn-on helices,based on in-
corporation of para-connected azobenzene within the core
of the helix,was not successful,introduction of a meta-con-
nected trans-azobenzene chromophore proved viable and re-
sulted in the formation of stable turn-off helices. Photochro-
mic trans!cis isomerization of the central azobenzene chro-
mophore disrupts the helix while thermal cis!trans rever-
sion restores the original helical conformation. Such light-
triggered systems can potentially function as photorespon-
sive dynamic receptors and hence promise applications in
the field of “smart” delivery devices.
[7] F. Ciardelli,O. Pieroni,A. Fissi,J. L. Houben, Biopolymers 1984, 23,
1423–1437.
[8] O. Pieroni,A. Fissi,F. Ciardelli, Biopolymers 1987, 26,1993–2007.
[9] S. Mayer,R. Zentel, Prog. Polym. Sci. 2001, 26,1973–2013.
[10] D. J. Flint,J. R. Kumita,O. S. Smart,G. A. Woolley,
Chem. Biol.
2002, 9,391–397.
[11] a) A. Khan,C. Kaiser,S. Hecht, Angew. Chem. 2006, 118,1912–
1915; Angew. Chem. Int. Ed. 2006, 45,1878–1881; b) A. Khan,S.
Hecht, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 2004, 45,
743–744.
[12] a) J. C. Nelson,J. G. Saven,J. S. Moore,P. G. Wolynes, Science 1997,
277,1793–1796; b) C. R. Ray,J. S. Moore, Adv. Polym. Sci. 2005,
177,91–149; c) M. T. Stone,J. M. Heemstra,J. S. Moore,
Chem. Res. 2006, 39,11–20.
Acc.
[13] R. B. Prince,J. G. Saven,P. G. Wolynes,J. S. Moore,
J. Am. Chem.
Soc. 1999, 121,3114–3121.
[14] K. Matsuda,M. T. Stone,J. S. Moore, J. Am. Chem. Soc. 2002, 124,
11836–11837.
Ongoing work in our laboratory is concerned with the
design of polymeric analogues featuring better spectral sepa-
ration of photoisomerizable unit and the helical backbone in
order to achieve more quantitative switching between com-
pact helical and extended coil structures.
[15] B. H. Zimm,J. K. Bragg, J. Chem. Phys. 1959, 31,526–535.
[16] D. J. Hill,J. S. Moore, Proc. Natl. Acad. Sci. USA 2002, 99,5053–
5057.
[17] R. B. Prince,PhD thesis,University of Illinois at Urbana-Cham-
paign,Urbana,IL, 2000.
[18] R. B. Prince,T. Okada,J. S. Moore, Angew. Chem. 1999, 111,245–
248; Angew. Chem. Int. Ed. 1999, 38,233–236.
Chem. Eur. J. 2006, 12,4764 – 4774
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim
4773