Table 1. Enantioselective Conjugate Addition to
trans-3-Nonen-2-onea
entry ligand
Cu salt
solvent time/h yield/%
ee/%
1
1
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
Cu(OTf)
Cu(OAc)2
CuI
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
toluene
Et2O
3
11
3
91
80
90
87
86
90
85
55
15
90
85
78
39
45
98 (S)
-3
96
23
30
88
87
66
3
95
96
93
71
56
2
2
3b
4
1 + 2
3
4
1
1
1
1
1
1
1
1
1
3
5c
6
3
2
7
2
8
THF
12
12
3
9
DME
10
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
11
12
13
14
5
Figure 1. Schematic representations of a C-C bond formation
TS (A) and a π-complex (B) in the conjugate addition reaction
based on density functional calculations of a simplified model (R3
) Me or Cl, R4 ) H, R5 ) Me).
12
12
12
CuBr
CuBr‚Me2S CH2Cl2
a Conditions: 3 mol % of Cu salt, 3.6 mol % of ligand, 1.5 equiv of
Et2Zn, 0 °C. b A 9:1 mixture of 1 and 2 was used. c Ligand 4 was used as
a diastereomeric mixture (86:14).
(TSs) of the organocopper conjugate addition (cf. Figure 1)
and conceived a variety of possible ligand structures that
form rigid Cu/Zn bimetallic complexes. After experimental
screening of several practical candidates, the aminohydroxy-
phosphine 1 emerged as a promising ligand.
sensitive to the countercation of the copper source. Oxygen
anions are uniformly better than halide anions (entries 10-
14). The slower reaction rate and the inferior enantioselec-
tivity by CuBr‚Me2S than by CuBr suggest that Me2S
competes with the ligand 1. On the basis of these results,
we employed Cu(OTf)2 and CH2Cl2 at the synthetically
convenient temperature of 0 °C in the following studies, and
some other choices may also be effective.
Representative results of the screening of the ligand and
the reaction conditions as studied for the addition of Et2Zn
to trans-3-nonen-2-one are summarized in Table 1. The
ligand 1 gave an enantioselectivity of up to 98% ee at 0 °C
(entries 1, 6, 7, and 10-12), whereas its diastereomer 2 gave
virtually no selectivity with a much slower reaction rate
(entry 2). This is a practical merit of the use of 1 because a
90:10 mixture of diastereomers 1 and 2 as synthesized
(Scheme 1a) gives essentially the same enantioselectivity as
pure 1 (entry 3). Ligands derived from bulkier aminoalde-
hydes gave lower selectivity (entries 4 and 5). Choice of
solvent is important.2 Noncoordinating solvents are superior
to coordinating solvents including bidentate 1,2-dimethoxy-
ethane (DME, entries 6-9). The enantioselectivity is also
Table 2 illustrates representative results of the addition of
Me2Zn and Et2Zn to a variety of R,â-unsaturated carbonyl
compounds. The substrate scope of the present catalytic
system has proven to be very wide. Acyclic enones reacted
in uniformly high enantioselectivity (g98% ee) and good
yield (79-91%); they are known as poor substrates for this
class of reactions, and enantioselectivities of >95% are
rare.2,3a,b,d-h,k,l The reaction was applicable to chalcone (entry
1) and aliphatic enones with â-aryl (entries 2-7) and alkyl
(entries 8-11) substituents. The electronic (entries 3-5) and
steric (entries 9 and 11) properties of the â-substituents did
not affect the selectivity. Furyl and thienyl substituents did
not show any adverse effect on the reaction (entries 6 and
7). The two organozinc reagents showed the same level of
selectivity of 98% ee: Me2Zn was less reactive but still gave
good yields (entries 2, 3, 8, and 9).3f The reaction can be
carried out on as much as a 10-mmol scale without significant
decrease of enantioselectivity (entry 10). The reaction of a
trisubstituted cyclic enone proceeded in excellent selectivity
of >98% ee (entry 12).3d Cyclic enones are poorer substrates
for the ligand 1 suggesting in turn that s-cis conformers take
part in the reaction of acyclic enones: 2-cyclohexenone was
only moderately selective (82% ee, entry 13), and 2-cyclo-
heptenone was poorly selective (16% ee, see Supporting
Information). R,â-Unsaturated esters are unreactive, but the
corresponding imide took part in the reaction smoothly and
gave excellent selectivity of 98.7% ee (entry 14).3e
(3) (a) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 779-781. (b) Shintani, R.; Fu, G. C. Org. Lett. 2002, 4, 3699-
3702. (c) Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem.
Soc. 2002, 124, 5262-5263. (d) Degrado, S. J.; Mizutani, H.; Hoveyda, A.
H. J. Am. Chem. Soc. 2002, 124, 13362-13363. (e) Hird, A. W.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2003, 42, 1276-1279. (f) Cesati, R. R.; De
Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96-101. (g)
Duncan, A. P.; Leighton, J. L. Org. Lett. 2004, 6, 4117-4119. (h) Morimoto,
T.; Mochizuki, N.; Suzuki, M. Tetrahedron Lett. 2004, 45, 5717-5722. (i)
Lo´pez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem.
Soc. 2004, 126, 12784-12785. (j) Feringa, B. L.; Badorrey, R.; Pena, D.;
Harutyunyan, S. R.; Minnaard, A. J. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5834-5838. (k) Takahashi, Y.; Yamamoto, Y.; Katagiri, K.; Danjo,
H.; Yamaguchi, K.; Imamoto, T. J. Org. Chem. 2005, 70, 9009-9012. (l)
Ito, K.; Eno, S.; Saito, B.; Katsuki, T. Tetrahedron Lett. 2005, 46, 3981-
3985. (m) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed.
2005, 44, 1376-1378. (n) Lo´pez, F.; Harutyunyan, S. R.; Meetsma, A.;
Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 2752-
2756. (o) Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2005, 44, 5306-5310. (p) Mazery, R. D.; Pullez, M.; Lo´pez, F.;
Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2005, 127, 9966-9967. (q) Hird, A. W.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 14988-14989. (r) Fillion, E.; Wilsily, A. J. Am. Chem.
Soc. 2006, 128, 2774-2775.
(4) Nakamura, E.; Yamanaka, M.; Mori, S. J. Am. Chem. Soc. 2000,
122, 1826-1827.
(5) Reetz, M. T. Chem. ReV. 1999, 99, 1121-1162.
(8) (a) Yamanaka, M.; Nakamura, E. Organometallics 2001, 20, 5675-
5681. (b) Canisius, J.; Gerold, A.; Krause, N. Angew. Chem., Int. Ed. 1999,
38, 1644-1646. (c) Frantz, D. E.; Singleton, D. A.; Snyder, J. P. J. Am.
Chem. Soc. 1997, 119, 3383-3384. (d) Woodward, S. Chem. Soc. ReV.
2000, 29, 393-401.
(6) Yoshikai, N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005,
127, 17978-17979.
(7) Nakamura, E.; Mori, S. Angew. Chem., Int. Ed. 2000, 39, 3750-
3771.
4154
Org. Lett., Vol. 8, No. 18, 2006