Wasserman et al. have shown that δ,ꢀ-epoxyimines undergo
intramolecular cyclization. Thus, 6,7-epoxy-2-heptanone
upon treatment with benzylamine yielded N-benzyl-6-oxa-
8-azabicyclo[3.2.1]octane. In contrast to 10 f 2, in the epoxy
heptanone system, the hydroxymethyl group adds intra-
molecularly to the imino double bond to yield the oxa-
tropane.15e No evidence of such an intramolecular addition
in the present epoxy imine system (10) was observed.
The exo-imino to endo-iminocyclitol process works equally
efficiently in the D- and L-hexose series with the interesting
consequence that a double inversion occurs at two carbon
atoms, namely, C4 and C5. This process is illustrated by the
conversion of the L-gulono analogue (11) to the 1,4-imino-
1,4-dideoxy-D-talitol (13) (Scheme 4) and of the D-mannono
Scheme 5. Synthesis of
N-n-Nonyl-C1-methyl-1,4-imino-1,4-dideoxy L-allitol
Scheme 4. Synthesis of
C1-Octyl-1,4-imino-1,4-dideoxy-D-talitol
logues 6d (IC50 ) 4.6 µM) and 9c (IC50 ) 8.2 µM) in the
D-ribo and L-ribitol series, respectively, were less active
relative to the N-desalkyl (NH) compound 8b.
The general route to azasugars disclosed in this report fits
within the context of other methods for their synthesis. For
example, a number of C1-substituted iminocyclitols have been
synthesized from 5-O-TBDMS-1-N-dehydro-1,4-imino-2,3-
O-isopropylidene-D-ribitol, which is formed by dehydro-
chlorination of the N-chloroamine and subsequent nucleo-
philic addition of lithium alkyls, aryls, and heteroaryls.17-19
The C1 aryl compounds are powerful inhibitors for the
nonspecific nucleoside N-ribohydrolases.18 The C1 nucleo-
sides are called immucillins and are important PNP inhibi-
tors.19 In the present synthesis, the C1 substituent is installed
at an earlier stage and the troublesome dimerization and
trimerization of the C1-unsubstituted 1-N-pyrrolidines, used
as starting materials, are avoided.
analogue (14) to the 1,4-imino-1,4-dideoxy-L-allitol (16)
(Scheme 5).16
The antiviral activity of selected C1 monoalkyl and N,C1
dialkyl analogues was evaluated in the bovine viral diarrhea
virus assay (BVDV).2 Compound 8b having no alkyl group
on nitrogen possesses an IC50 value of 1.5 µM. This value
is superior to that for N-n-butyl DNJ (IC50 ) 125 µM) and
N-n-nonyl DNJ (IC50 ) 10 µM).9 The N-C1-Dialkyl ana-
Acknowledgment. We thank the United Therapeutics Cor-
poration (UTC) for support of this work under an unrestricted
gift to the University of Illinois at Chicago. We are also
grateful for valuable discussions of the biological results with
scientists at UTC, Raymond A. Dwek and Terry D. Butters
at the Department of Biochemistry, Oxford University, as
well as insightful discussions of the chemistry with George
Fleet of the Chemistry Department, Oxford University.
Supporting Information Available: Experimental pro-
cedures and compound characterization data are available
in a PDF file, and X-ray crystallographic data are available
in a CIF for 2a. This material is available free of charge via
(13) N-Alkylation, preferably C8-C9 is a requisite for BVDV and HCV
activity. See: Mellor, H. R.; Nolan, J.; Pickering, L.; Wormald, M. R.;
Platt, R. A.; Dwek, R. A.; Fleet, G. J.; Butters, T. D. Biochem. J. 2002
366, 225. (CF3CO)2O/H2O acts as a solvent for the substrate. The water
affords a slow release of CF3COOH necessary for hydrolysis.
(14) (a) Mehta, A. S.; Gu, B.; Conyers, B.; Ouzounov, S.; Wang, L.;
Moriarty, R. M.; Dwek, R. A.; Block, T. M. Antimicrob. Agents Chemother.
2004, 48, 2085. (b) Boucheron, C.; Desvergnes, V.; Compain, P.; Martin,
O. R.; Lavi, A.; Mackeen, M.; Wormald, M.; Dwek, R.; Butters, T. D.
Tetrahedron: Asymmetry 2005, 16, 1747.
OL061071R
(15) (a) Tenud, L.; Farooq, S.; Seibl, J.; Eschenmoser, A. HelV. Chim.
Acta 1970, 53, 2059. (b) Baldwin, J. E. J. Chem. Soc., Chem. Commun.
1976, 18, 734. (c) A similar epoxide intermediate has been observed in the
base hydrolysis of 7. Treatment of 7 with aqueous ammonia takes a different
pathway yielding the six-membered lactam, 5-amino-7-deoxy-2,3-O-iso-
propylidene, 1,5-lactam. See: Godskesen, M.; Lundt, I.; Madsen, R.;
Winchester, B. Bioorg. Med. Chem. 1996, 4, 1857. (d) In the case of hydro-
xylamine, a five-membered nitrone is formed. See: Duff, F. J.; Vivien, V.;
Wightman, R. H. J. Chem. Soc., Chem. Commun. 2000, 21, 2127. (e) Was-
serman, H. H.; Thyes, M.; Wolff, S.; Rusiecki, V. Tetrahedron Lett. 1988,
29, 4973. Wasserman, H. H.; Rusiecki, V. Tetrahedron Lett. 1988, 29, 4977.
(16) (a) Cenci di Bello, I.; Fleet, G. W. J.; Namgoong, S. K.; Tadano,
K.; Winchester, B. Biochem. J. 1989, 259, 855. (b) Al Daher, S.; Fleet, G.;
Nagmoong, S. K.; Winchester, B. Biochem. J. 1989, 258, 613. (c) Lundt,
I.; Madsen, R.; Al Daher, S.; Winchester, B. Tetrahedron 1994, 50, 7513.
(17) For a review of polyhydroxylated pyrrolidine cyclic imines, see:
Chapman, T. M.; Davies, I. G.; Gu, B.; Block, T. M.; Scopes, D. I. C.;
Hay, P. A.; Courtney, S. M.; McNeill, L. A.; Schofield, C. J.; Davis, B. G.
J. Am. Chem. Soc. 2005, 127, 506.
(18) (a) Horenstein, B. A.; Zabinski, R. F.; Schramm, V. L. Tetrahedron
Lett. 1993, 34, 7213. (b) Furneaux, R. H.; Limberg, G.; Tyler, P. C.;
Schramm, V. L. Tetrahedron 1997, 53, 2915.
(19) (a) Evans, G. B.; Furneaux, R. H.; Gainsford, G. J.; Schramm, V.
L.; Tyler, P. C. Tetrahedron 2000, 56, 3053. (b) Evans, G. B.; Furneaux,
R. H.; Hutchison, T. L.; Kezar, H. S.; Morris, P. E., Jr.; Schramm, V. L.;
Tyler, P. C. J. Org. Chem. 2001, 66, 5723. (c) Ting, L.-M.; Shi, W.;
Lewandowicz, A.; Singh, V.; Mwakingwe, A.; Birck, Ma, R.; Ringia, E.
A. T.; Bench, G.; Madrid, D. C.; Tyler, P. C.; Evans, G. B.; Furneaux, R.
H.; Schramm, V. L.; Kim, K. J. Biol. Chem. 2005, 280, 9547.
Org. Lett., Vol. 8, No. 16, 2006
3467