G. Butora et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4715–4722
4721
Table 6. Pharmacokinetic properties of the cyclopropyl derivative 29 (Sprague–Dawley rats)
O
N
CF3
N
H
CF3
Route
Dose (mg/kg)
AUCn (lM h)
Clearance (mL/min/kg)
7.36
Vol. Distrib. (L/kg)
2.19
t1/2 (h)
Cmax (lM)
Tmax (h)
F (%)
iv
p.o.
1.00
3.00
4.17
4.08
4.11
1.58
4.67
98
2. Onuffer, J. J.; Horuk, R. Trends Pharmacol. Sci. 2002, 23,
459.
and cyclopropylmethyl (37, IC50 = 25 nM, CHO,
IC50 = 9 nM hMonocyte) analogs.
3. Bendall, L. Histol. Histopathol. 2005, 20, 907.
4. Wells, T. N.; Power, C. A.; Shaw, J. P.; Proudfoot, A. E.
Trends Pharmacol. Sci. 2006, 27, 41.
5. Pease, J. E.; Williams, T. J. Br. J. Pharmacol. 2006, 147,
S212.
6. Laing, K. J.; Secombes, C. J. Dev. Comp. Immunol. 2004,
28, 443.
7. Tarrant, T. K.; Patel, D. D. Pathophysiology 2006, 13, 1.
8. Sozzani, S.; Introna, M.; Bernasconi, S.; Polentarutti, N.;
Cinque, P.; Poli, G.; Sica, A.; Mantovani, A. J. Leukocyte
Biol. 1997, 62, 30.
The effectiveness of such small aliphatic substituents was
also evaluated in simpler 4-phenyl piperidines, Table 3.
In this series, the activities of the synthesized com-
pounds did not reach the level of those obtained in the
spiroindene class. The most potent compound in this
series (propyl, 84, IC50 = 126 nM, CHO, IC50 = 42 nM
hMonocyte) was approximately ten-fold less active, than
the best spiroindenes.
9. Quinones, M. P.; Estrada, C. A.; Kalkonde, Y.; Ahuja, S.
K.; Kuziel, W. A.; Mack, M.; Ahuja, S. S. J. Mol. Med.
2005, 83, 672.
10. Mahad, D. J.; Ransohoff, R. M. Sem. Immunol. 2003, 15,
23.
11. Charo, I. F.; Taubman, M. B. Circ. Res. 2004, 95, 858.
12. Dawson, J.; Miltz, W.; Mir, A. K.; Wiessner, C. Expert
Opin. Ther. Targets 2003, 7, 35.
The functional activity of selected compounds was eval-
uated using the calcium flux based FLIPR assay.31 The
results are summarized in Table 4. Once again, in agree-
ment with the binding data, the cyclopropyl derivative
29 and its methylene homolog 37 exhibited particularly
high functional activities.
The cyclopropyl analog 29 also showed quite remark-
able selectivity against other closely related chemokine
receptors, Table 5. Except for the CCR5 receptor, which
it showed an inhibition of 38% at a concentration of
1 mM, affinities to all other chemokine receptors were
negligible.
13. Feria, M.; Diaz-Gonzalez, F. Expert Opin. Ther. Pat.
2006, 16, 49.
14. Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.;
Sawada, H.; Iizawa, Y.; Shiraishi, M.; Aramaki, Y.;
Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 5698.
15. Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishik-
awa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.;
Nishimura, O.; Baba, M.; Fujino, M. J. Med. Chem.
2000, 43, 2049.
16. Forbes, I. T.; Cooper, D. G.; Dodds, E. K.; Hickey, D.
M.; Ife, R. J.; Meeson, M.; Stockley, M.; Berkhout, T. A.;
Gohil, J.; Groot, P. H.; Moores, K. Bioorg. Med. Chem.
Lett. 2000, 10, 1803.
17. Witherington, J.; Bordas, V.; Cooper, D. G.; Forbes, I. T.;
Gribble, A. D.; Ife, R. J.; Berkhout, T.; Gohil, J.; Groot,
P. H. Bioorg. Med. Chem. Lett. 2001, 11, 2177.
18. Mirzadegan, T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky, I.;
McCarley, D.; Mulkins, M.; Weatherhead, G. S.; Lapi-
erre, J. M.; Dankwardt, J.; Morgans, D., Jr.; Wilhelm, R.;
Jarnagin, K. J. Biol. Chem. 2000, 275, 25562.
19. Moree, W. J.; Kataoka, K.; Ramirez-Weinhouse, M. M.;
Shiota, T.; Imai, M.; Sudo, M.; Tsutsumi, T.; Endo, N.;
Muroga, Y.; Hada, T.; Tanaka, H.; Morita, T.; Greene, J.;
Barnum, D.; Saunders, J.; Kato, Y.; Myers, P. L.; Tarby,
C. M. Bioorg. Med. Chem. Lett. 2004, 14, 5413.
20. Van Lommen, G.; Doyon, J.; Coesemans, E.; Boeckx, S.;
Cools, M.; Buntinx, M.; Hermans, B.; Van Wauwe, J.
Bioorg. Med. Chem. Lett. 2005, 15, 497.
The cyclopropyl derivative 29 was also evaluated
in a rat pharmacokinetic model. Excellent drug levels
were observed after both intravenous (1.0 mg/kg,
AUCn = 4.17 lM) as well as oral (3.0 mg/kg, AUCn =
4.08 lM) administration. The compound showed a slow
clearance rate of 7.36 mL/min/kg, low volume of distri-
bution (2.19 L/kg), and an outstanding oral bioavail-
ability of 98%, Table 6.
A systematic examination of the central part of the lead
structure 10 demonstrated that the aromatic ring can be
successfully replaced with small, alicyclic groups. The
present study led to the discovery of (2S)-N-[3,5-bis
(trifluoromethyl)benzyl]-2-cyclopropyl-4-[(1R,30R)-30-meth-
yl-10H-spiro[indene-1,40-piperidin]-10-yl]butanamide (29), a
high affinity antagonist of the CCR2b receptor with an
excellent selectivity profile and outstanding pharmacokinet-
ic properties.
21. Kettle, J. G.; Faull, A. W.; Barker, A. J.; Davies, D. H.;
Stone, M. A. Bioorg. Med. Chem. Lett. 2004, 14, 405.
22. Initially, the binding affinities were evaluated in the CHO
assay, later the Human Monocyte-based assay was used.
Radioligand Competition Binding Assays: Human mono-
References and notes
1. Bachmann, M. F.; Kopf, M.; Marsland, B. J. Nat. Rev.
Immunol. 2006, 6, 159.