C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism of Au(I)-Catalyzed
Rearrangement
groups. Furthermore, depending on the choice of nucleophile, either
cyclic or acyclic vinylsilanes were produced. Both of these reagents
can be employed for stereoselective synthesis of trisubstituted18
olefins through transition-metal-catalyzed cross-coupling reactions.
Acknowledgment. We gratefully acknowledge the University of
California, Berkeley, NIHGMS (R01 GM073932-01), Merck Research
Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont, GlaxoSmith-
Kline, Eli Lilly & Co., Pfizer, AstraZeneca, Abbott, and Roche for
financial support. Y.H. thanks JSPS for a postdoctoral fellowship.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) (a) Denmark, S. D.; Baird, J. D. Chem.sEur. J. 2006 12, 4954. (b)
Denmark, S. E.; Sweis, F. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; De Meijere, A., Diderich, F., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; Chapter 4. (c) Hiyama, T.; Shirakawa, E. Top. Curr.
Chem. 2002, 219, 61.
(2) (a) Trost, B. M.; Ball, Z. T. Synthesis 2005, 6, 853. (b) Marek, I.; Chinkov,
N.; Banon-Tenne, D. In Metal-Catalyzed Cross-Coupling Reactions, 2nd
ed.; De Meijere, A., Diderich, F., Eds.; Wiley- VCH: Weinheim,
Germany, 2004; Chapter 4. (c) Normant, J. F.; Alexakis, A. Synthesis
1981, 902.
(3) For Lewis acid-mediated trans-allylsilylation, see: (a) Yeon, S. H.; Han,
J. S.; Hong, E.; Do, Y.; Jung, I. N. J. Organomet. Chem. 1995, 499, 159.
(b) Asao, N.; Yoshikawa, E.; Yamamoto, Y. J. Org. Chem. 1996, 61,
4874. (c) Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y. J. Am.
Chem. Soc. 1997, 119, 6781. For a review, see: (d) Asao, N.; Yamamoto,
Y. Bull. Chem. Soc. Jpn 2000, 3, 1071.
(4) (a) Yamguchi, M.; Sotokawa, T.; Hirama, M. Chem. Commun. 1997, 743.
(b) Klaps, E.; Schmid, W. J. Org. Chem. 1999, 64, 7537. Allylmetalation
of silylacetylenes is often not stereoselective: (c) Fujiwara, N.; Yamamoto,
Y. J. Org. Chem. 1997, 62, 2318. (d) Molander, G. A. J. Org. Chem.
1983, 48, 5409.
(5) For selected examples of metal-catalyzed cis-allylmetalation, see: (a)
Okada, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1996, 118, 6076.
(b) Shirakawa, E.; Yamasaki, K.; Yoshia, H.; Hiyama, T. J. Am. Chem.
Soc. 1999, 121, 10221. (c) Nishikawa, T.; Yorimitsu, H.; Oshima, K.
Synlett 2004, 1573. For a review, see: (d) Yamamoto, Y.; Asao, N. Chem.
ReV. 1993, 93, 2207.
(6) (a) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978. (b)
Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925. (c) Binder,
J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (d) Sherry, B. D.; Maus, L.;
Lafortezza, B. N.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 8132. For
a review of cyclization-induced rearrangements, see: (e) Overman, L. E.
Angew. Chem., Int. Ed. Engl. 1984, 23, 579.
product 8u even when methanol was employed as a nucleophile
(entry 21).
A proposed mechanism involving SE2′ addition of the allylsilane
onto a gold(I)-complexed alkyne to generate a gold-stabilized cation
is outlined in Scheme 1.13 While â-silyl fragmentation is generally
faster than trapping of the cation,14 stabilization of 9 by back-
bonding from gold(I) (i.e., resonance structure 10)15 allows for
methanol addition to afford cyclic silane 11. On the other hand,
when the relative rate of nucleophilic trapping is decreased, selective
trapping occurs at silyl cation 12 to afford vinylsilane 13.
Presumably, this is the case when the less nucleophilic phenol is
used and when addition to the cation is sterically encumbered (Table
2, entries 17 and 19). Furthermore, an increase in the relative rate
of â-silyl fragmentation as a result of the steric clash of the methyl
group and the silicon substituents accounts for the observation that
R-substituted allylsilane 6k affords only vinylsilane 8u (Table 2,
entry 21).
(7) For a recent report of Au(III)-catalyzed reactions of allylsilanes, see:
Georgy, M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127,
14180.
(8) (a) Ferna´ndez-Rivas, C.; Me´ndez, M.; Echavarren, A. M. J. Am. Chem.
Soc. 2000, 122, 1221. (b) Ferna´ndez-Rivas, C.; Me´ndez, M.; Nieto-
Oberhuber, C.; Echavarren, A. M. J. Org. Chem. 2002, 67, 5197. For an
endo-selective intramolecular trans-addition of allylsilanes to alkynes,
see: (c) Imamura, K.; Yoshikawa, E.; Gevorgyan, V.; Yamamoto, Y. J.
Am. Chem. Soc. 1998, 120, 5339.
(9) Under identical conditions, (Ph3P)AuCl required 10 h to afford 72% yield
of 2a. On the other hand, no reaction was observed on treatment of 1
with AgSbF6, 10% AgSbF6/4% PPh3, PtCl2, or (PhCN)2PdCl2.
(10) Reaction of 3 with (Ph3P)AuCl/AgBF4 gave 4a and 5a in 15 and 7%
yield, respectively. No reaction was observed on treatment of 3 with
AgSbF6, AgBF4, PtCl2, (PhCN)2PdCl2, (PhCN)2PdCl2/AgBF4, or CuOTf.
(11) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 45, 200.
(12) The allyl analogue of 6i (R1 ) Ph; R2, R3 ) H) did not undergo the
gold(I)-catalyzed reaction with methanol and gave a complex mixture with
phenol at 50 °C.
The products of the gold(I)-catalyzed acetylenic sila-Cope
rearrangement serve as useful reagents in a number of transforma-
tions. For example, palladium-catalyzed cross-coupling1 of vinyl-
silane 8h with ethyl 4-iodobenzoate produced trisubstituted olefin
14 in 60% yield (eq 2). Moreover, R-allylated aldehyde 15 was
prepared through a Tamao oxidation16 of 8h. Additionally, the
silacycles can be viewed as latent vinylsilanes that can be revealed
on treatment with a mild Lewis acid. This allowed for chemose-
lective cross-coupling reactions of arylbromide 16 to be performed,
while the vinyl silane remained protected as the silacycle (eq 3).
Reaction of 17 with 5 mol % of Sc(OTf)3 generated vinylsilane
18, which was subjected to a second cross-coupling reaction to
afford trisubstituted olefin 19.
(13) Deuterium labeling is consistent with protonation of a vinylgold intermedi-
ate (see Supporting Information).
(14) (a) Hollis, T. K.; Bosnich, B. J. Am. Chem. Soc. 1995, 117, 4570. (b)
Kim, K.-C.; Reed, C. A.; Elliot, D. W.; Mueller, L. J.; Than, T.; Lin, L.;
Lambert, J. B. Science 2002, 297, 825. (c) Blumenkopf, T. A.; Overman,
L. E. Chem. ReV. 1986, 86, 857 and references therein.
(15) (a) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. (b)
Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004,
126, 8654. (c) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem.
Soc. 2004, 126, 10858. (d) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc.
2004, 126, 11807. (e) Nieto-Oberhuber, C.; Lo´pez, S.; Echavarren, A.
M. J. Am. Chem. Soc. 2005, 127, 6178. (f) Gorin, D. J.; Davis, N. R.;
Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (g) Johansson, M. J.;
Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
18002.
(16) (a) Tamao, K.; Kumada, H. Tetrahedron Lett. 1984, 25, 321. (b) Jones,
G. R.; Landais, Y. Tetrahedron 1996, 52, 7599.
(17) Slutsky, J.; Kwart, H. J. Org. Chem. 1973, 38, 3658.
(18) Reiser, O. Angew. Chem., Int. Ed. 2006, 45, 2838.
In conclusion, a cationic gold(I) complex has been developed
as a catalyst for the first transition-metal-catalyzed acetylenic sila-
Cope rearrangement.17 The reaction allows for the stereoselective
synthesis of vinylsilanes substituted with a wide range of functional
JA0636800
9
J. AM. CHEM. SOC. VOL. 128, NO. 35, 2006 11365