Masu et al.
center or the aid of a chiral auxiliary. It is known that the folded
conformations of aromatic amide oligomers are more stable than
those of aliphatic amides.4 Considering this, we examined the
stability of the folded conformation of aromatic chain imides.
Two aromatic moieties connected at the iminodicarbonyl linker
may have a conformation in which they face each other due to
the planarity and preferred cis conformation of an amide unit.5
It is also known that optically active atropisomeric aromatic
amides have a long half-life for racemization in solution.6
Aromatic chain imides can be considered where two units of
atropisomeric aromatic amides are connected. Therefore, a
conformationally stable concave-shaped folding unit can be
created. In our previous study, we found that aromatic chain
imides 1 and 2 gave chiral crystals upon recrystallization though
the molecules have no asymmetric carbon.7 They had concave-
shaped folded conformations in crystals examined by single-
crystal X-ray analysis. We have been interested in the stability
of their folded conformations and whether the helical chirality
observed in the crystalline state can be preserved even in
solution.8 In the first part of this paper we report on the simplest
chiral concave-shaped foldamer (or a unit of foldamer) which
shows reasonably stable helical chirality even in solution at
ambient temperature. In the last part of the paper, we report on
the application of this concave-shaped aromatic foldamer to a
chiral photochromic system which is used as a potent tool for
nanotechnology,9 especially for optical data storage and process-
ing.10 Generally, bistable molecular systems are used for this
purpose. The cis-trans photoisomerization of sterically over-
crowded alkenes is among the most extensively studied ex-
ample.11 The cis-trans photoisomerization of pendant azoben-
zenes is frequently utilized in liquid crystalline polymers for
this purpose.12 Recently, the reaction was applied to molecular
shuttles.13 In addition to these applications, the 1,6-electrocy-
clization of diarylethenes14 and fulgides,15 typical photochromic
systems, have been applied as well. A few examples employ
redox systems.16 In light of the progress in this area, an entry
of a novel chiral photochromic system based on a new concept
using hitherto unexplored reactions is highly desirable. Fol-
damers containing chromophoric functionalities are of current
interest.17 Cyclodimers of coumarin18 and anthracene19 are well
known to show their retro cycloreversion. A difficulty associated
with applying an aromatic [4 + 4] cycloadduct for a chiral
photochromic system is control of molecular chirality after retro
cycloreversion. To keep the molecular chirality to manifest its
induced CD in solution, the geometrical relation of two aromatic
moieties regenerated by cycloreversion should be the same as
the original one with the same helicity. This is hard to
accomplish with a linearly tethered molecule due to its flex-
ibility. In view of this, we considered that the conformational
stability of aromatic chain imides is useful for creation of a
new chiral photochromic system.
Herein, we report the construction of a simple helically chiral
foldamer unit and its application to a novel chiral photochromic
system based on aromatic [4 + 4] photocycloaddition.7
Results and Discussion
Conformational Stability of Concave-Shaped Chiral Aro-
matic Chain Imides in Solution. The CD spectra of six chiral
aromatic chain imides,20 (P)-1, (P)-2, (M)-2, (P)-(R)-3, (M)-
(11) (a) Huck, N. P. M.; Jager, W. F.; Feringa, B. L. Science 1996, 273,
1686-1688. (b) Zijlstra, R. W. J.; Jager, W. F.; Lange, B.; Duijnen, P. T.;
Feringa, B. L.; Goto, H.; Saito, A.; Koumura, N.; Harada, N. J. Org. Chem.
1999, 64, 1667-1674.
(12) (a) Moriyama, M.; Tamaoki, N. Chem. Lett. 2001, 1142-1143. (b)
Ichimura, K. Chem. ReV. 2000, 100, 1847-1873. (c) Bobrovsky, A. Y.;
Boiko, N. I.; Shibaev V. P. Chem. Mater. 2001, 13, 1998-2001. (d) Kim,
M.-J.; Shin, B.-G.; Kim, J.-J.; Kim, D.-Y. J. Am. Chem. Soc. 2002, 124,
3504-3505.
(13) (a) Bottari, G.; Leigh, D. A.; Pe´rez, E. M. J. Am. Chem. Soc. 2003,
125, 13360-13361. (b) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.;
Martel, D.; Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem.
Soc. 2003, 125, 8644-8654. (c) Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H.
Org. Lett. 2004, 6, 2085-2088.
(14) (a) Kobatake, S.; Yamada, M.; Yamada, T.; Irie M. J. Am. Chem.
Soc. 1999, 121, 8450-8456. (b) Kodani, T.; Matsuda, K.; Yamada, T.
Kobatake, S.; Irie M. J. Am. Chem. Soc. 2000, 122, 9631-9637. (c) Irie,
M. Chem. ReV. 2000, 100, 1685-1716. (d) Mitchell, R. H.; Brkic, Z.; Sauro,
V. A.; Berg, D. J. J. Am. Chem. Soc. 2003, 125, 7581-7585. (e) Matsuda,
K.; Takayama, K.; Irie, M. Inorg. Chem. 2004, 43, 482-489.
(15) (a) Heller, G. H.; Oliver, S. J. Chem. Soc., Perkin Trans. 1 1981,
197-201. (b) Darcy, P. J.; Heller, G. H.; Strydom, P. J.; Whittall, J. J.
Chem. Soc., Perkin Trans. 1 1981, 202-205. (c) Yokoyama, Y. Chem.
ReV. 2000, 100, 1717-1739. (d) Liang, Y.; Dvornikov, A. S.; Rentzepis,
P. M. Macromolecules 2002, 35, 9377-9382.
(3) (a) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997,
97, 2005-2062. (b) Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem.
Eur. J. 1999, 5, 3471-3481. (c) Fuhrhop, J.-H.; Wang, T. Chem. ReV. 2004,
104, 2901-2938.
(4) (a) Marsella, M. J.; Kim, I. T.; Tham, F. J. Am. Chem. Soc. 2000,
122, 974-975. (b) Nakamura, K.; Okubo, H.; Yamaguchi, M. Org. Lett.
2001, 3, 1097-1099. (c) Adams, H.; Hunter, C. A.; Lawson, K. R.; Perkins,
J.; Spev, S. E.; Urch, C. J.; Sanderson, J. M. Chem. Eur. J. 2001, 7, 4863-
4878. (d) Zhao, D.; Moore, J. S. J. Org. Chem. 2002, 67, 3548-3554. (e)
Huc, I. Eur. J. Org. Chem. 2004, 17-29.
(5) (a) Yamaguchi, K.; Matsumura, G.; Kagechika, H.; Azumaya, I.; Ito,
Y.; Itai, A.; Shudo, K. J. Am. Chem. Soc. 1991, 113, 5474-5475. (b) Itai,
A.; Toriumi, Y.; Saito, S.; Kagechika, H.; Shudo, K. J. Am. Chem. Soc.
1992, 114, 10649-10650. (c) Kohmoto, S.; Masu, H.; Tatsuno, C.;
Kishikawa, K.; Yamamoto, M.; Yamaguchi, K. J. Chem. Soc., Perkin Trans.
1 2000, 4464-4468.
(6) (a) Clayden, J.; Pink, J. H. Tetrahedron Lett. 1997, 38, 2561-2564.
(b) Clayden, J.; Mitjans, D.; Yousset, L. H. J. Am. Chem. Soc. 2002, 124,
5266-5267.
(7) Kohmoto, S.; Ono, Y.; Masu, H.; Yamaguchi, K.; Kishikawa, K.;
Yamamoto, M. Org. Lett. 2001, 3, 4153-4155.
(8) (a) Azumaya, I.; Yamaguchi, K.; Okamoto, I.; Kagechika, H.; Shudo,
K. J. Am. Chem. Soc. 1995, 117, 9083-9084. (b) Tabei, J.; Nomura, R.;
Masuda, T. Macromolecules 2003, 36, 573-577.
(16) Nakajima, R.; Tsuruta, M.; Higuchi, M.; Yamamoto, K. J. Am.
Chem. Soc. 2004, 126, 1630-1631.
(17) Han, J. J.; Wang, W.; Li, A. D. Q, J. Am. Chem. Soc. 2006, 128,
672-673.
(18) (a) McCullough, J. J. Chem. ReV. 1987, 87, 811-860. (b) Mal, N.
K.; Fujiwara, M.; Tanaka, Y.; Taguchi, T.; Matsukawa, M. Chem. Mater.
2003, 15, 3385-3394. (c) Motoyanagi, J.; Fukushima, T.; Ishii, N.; Aida,
T. J. Am. Chem. Soc. 2006, 128, 4220-4221.
(9) (a) Feringa, B. L.; Delden, R. A.; Koumura, N.; Geertsema, E. M.
Chem. ReV. 2000, 100, 1789-1816. (b) Chen, C.-T.; Chou, Y.-C. J. Am.
Chem. Soc. 2000, 122, 7662-7672. (c) Nakashima, H.; Fujiki, M.; Koe, J.
R.; Motonaga, M. J. Am. Chem. Soc. 2001, 123, 1963-1969. (d) Braga, S.
F.; Galva˜o, D. S.; Barone, P. M. V. B.; Dantas, S. O. J. Phys. Chem. B
2001, 105, 8334-8338. (e) Fenniri, H.; Deng, B. L.; Ribbe, A. E. J. Am.
Chem. Soc. 2002, 124, 11064-11072.
(19) (a) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P. Pure Appl.
Chem. 1980, 52, 2633-2648. (b) Becker, H.-D. Chem. ReV. 1993, 93, 145-
172. (c) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade, R.
Chem. Soc. ReV. 2000, 29, 43-55. (d) Bouas-Laurent, H.; Castellan, A.;
Desvergne, J.-P.; Lapouyade, R. Chem. Soc. ReV. 2001, 30, 248-263. (e)
Cicogna, F.; Ingrosso, G.; Lodato, F.; Marchetti, F.; Zandomenghi, M.
Tetrahedron 2004, 60, 11959-11968.
(10) (a) Green, M. M.; Cheon, K.-S.; Yang, S.-Y.; Park, J.-W.;
Swansburg, S.; Liu, W. Acc. Chem. Res. 2001, 34, 672-680. (b) Sakamoto,
M.; Iwamoto, T.; Nono, N.; Ando, M.; Arai, W.; Mino, T.; Fujita, T. J.
Org. Chem. 2003, 68, 942-946. (c) Goto, H.; Zhang, H. Q.; Yashima, E.
J. Am. Chem. Soc. 2003, 125, 2516-2523. (d) Saxena, A.; Guo, G.; Fujiki,
M.; Yang, Y.; Ohira, A.; Okoshi, K.; Naito, M. Macromolecules 2004, 37,
3081-3083. (e) Yashima, E.; Maeda, K.; Nishimura, T. Chem. Eur. J. 2004,
10, 42-51.
(20) The known chiral aromatic chain imides were prepared according
to the previously reported method (refs 5c and 7).
8038 J. Org. Chem., Vol. 71, No. 21, 2006