10.1002/anie.201806036
Angewandte Chemie International Edition
6879; d) I. Kalvet, K. J. Bonney, F. Schoenebeck, J. Org. Chem. 2014, 79,
12041; e) K. J. Bonney, F. Proutiere, F. Schoenebeck, Chem. Sci. 2013, 4,
4434.
To the best of our knowledge, this is the first general and a priori
predictable chemoselective C-S bond formation in the presence of
competing potentially reactive C-OTf and C-Cl sites (see Scheme 3).
Such chemoselective strategies are of considerable value in the build-
up of densely functionalized or complex molecules ranging from
pharmaceuticals to materials and a highly sought after strategy in the
demand for late-stage synthetic diversification.
[6] For examples, see: a) K. L. Dunbar, D. H. Scharf, A. Litomska, C.
Hertweck, Chem. Rev. 2017, 117, 5521; b) C.-F. Lee, Y.-C. Liu, S. S.
Badsara, Chem. Asian J. 2014, 9, 706.
[7] a) G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries, S. Leitza,
E. B. Reilly, G. F. Okasinski, S. W. Fesik, T. W. von Geldern, J. Med.
Chem. 2001, 44, 1202; b) S. F. Nielsen, E. Ø. Nielsen, G. M. Olsen, T.
Liljefors, D. Peters, J. Med. Chem. 2000, 43, 2217; c) E. De Gianni, C.
Fimognari, in The Enzymes, Vol. 37 (Eds.: S. Z. Bathaie, F. Tamanoi),
Academic Press, 2015; d) J. Yoo, N. Sanoj Rejinold, D. Lee, S. Jon, Y.-
C. Kim, J. Control. Release 2017, 264, 89.
[8] a) B. Hendriks, J. Waelkens, J. M. Winne, F. E. Du Prez, ACS Macro Lett.
2017, 6, 930; b) L. J. Mathias, G. Cei, R. A. Johnson, M. Yoneyama,
Polym. Bull. 1995, 34, 287.
[9] Advances in Sulfur Chemistry, Vol.2 (Ed.: C. M. Rayner), JAI Press,
Greenwich, CT, 2000.
[10] a) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400; b) I.
P. Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596-1636; c) Y.
Zhang, K. C. Ngeow, J. Y. Ying, Org. Lett. 2007, 9, 3495; d) G. T.
Venkanna, H. D. Arman, Z. J. Tonzetich, ACS Catalysis 2014, 4, 2941.
[11] a) M. Sayah, M. G. Organ, Chem. Eur. J. 2011, 17, 11719; b) J. L. Farmer,
M. Pompeo, A. J. Lough, M. G. Organ, Chem. Eur. J. 2014, 20, 15790; c)
M. A. Fernández-Rodríguez, Q. Shen, J. F. Hartwig, J. Am. Chem. Soc.
2006, 128, 2180; d) T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587; e) J. F.
Hartwig, Acc. Chem. Res. 2008, 41, 1534; e) T. Kondo, T.-a. Mitsudo,
Chem. Rev. 2000, 100, 3205.
[12] To the best of our knowledge, there is no report on a site-selective C-S
coupling in which C-Br, C-Cl and C-OTf were in competition. For
examples where isolated selective couplings have been achieved, see: a)
M. A. Fernández-Rodríguez, J. F. Hartwig, J. Org. Chem. 2009, 74, 1663;
b) A. Rostami, A. Rostami, A. Ghaderi, M. A. Zolfigol, RSC Advances
2015, 5, 37060; c) Y. Liu, J. Kim, H. Seo, S. Park, J. Chae, Adv. Synth.
Catal. 2015, 357, 2205; d) B. A. Vara, X. Li, S. Berritt, C. R. Walters, E.
J. Petersson, G. A. Molander, Chem. Sci. 2018, 9, 336.
In summary, herein we demonstrated the versatility of the dinuclear
Pd(I) concept in C-S bond formation, allowing avoidance of poisonous
Pd ate complexes that may be encountered under Pd(0) catalysis. We
achieved thiolations of a wide range of aryl iodides and bromides,
even selectively in the presence of C-OTf and/or C-Cl for the first
time for a broad set of substrates. We provided X-ray, computational
and reactivity data in support of direct Pd(I)-Pd(I) catalysis. Due to
their air and moisture stability, the Pd(I) species generated were easily
recovered using standard laboratory purification methods
(chromatography on silica gel). In multiple rounds of recycling, there
was no loss in catalytic activity or efficiency.
Acknowledgements
We thank the RWTH Aachen, the MIWF NRW and the European
Research Council (ERC-637993) for funding. Calculations were
performed with computing resources granted by JARA-HPC from
RWTH Aachen University under project ‘jara0091’.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: chemoselectivity • thiolation • dinuclear Pd(I) • DFT
calculation • homogeneous catalysis
[13] a) M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila, J. W. Johannes,
J. Am. Chem. Soc. 2016, 138, 1760; b) C. Valente, M. Pompeo, M. Sayah,
M. G. Organ, Org. Process Res. Dev. 2014, 18, 180.
[1] a) Handbook of Organopalladium Chemistry for Organic Synthesis (Eds.:
E.-I. Negishi, A. de Meijere), Wiley, New York, 2002; b) Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed. (Eds.: F. Diederich, A. de
Meijere), Wiley-VCH, Weinheim, 2004; c) J. F. Hartwig in
Organotransition Metal Chemistry-From Bonding to Catalysis,
University Science Books, Sausalito, CA, 2010; d) C. C. Johansson
Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew.Chem. Int.
Ed. 2012, 51, 5062; Angew. Chem. 2012, 124, 5150; e) T. Colacot, New
Trends in Cross Coupling:Theory and Applications, RSC, London, 2014.
[2] For examples of air-stable palladium catalysts, see: a) Q. Du, Y. Li,
Beilstein J. Org. Chem. 2011, 7, 378; b) A. Majumder, R. Gupta, M.
Mandal, M. Babu, D. Chakraborty, J. Organomet. Chem. 2015, 781, 23;
c) G. Y. Li, J. Org. Chem. 2002, 67, 3643; d) G. Y. Li, G. Zheng, A. F.
Noonan, J. Org. Chem. 2001, 66, 8677. On the air-sensitivity of
commonly used trialkylphosphine ligands, see: e) D. H. Valentine Jr, J. H.
Hillhouse, Synthesis 2003, 2003, 2437. For examples of air-stable
phosphine and phosphine oxide ligands, see: a) G. Y. Li, Angew. Chem.
Int. Ed. 2001, 40, 1513; b) L. Ackermann, R. Born, Angew. Chem. Int. Ed.
2005, 44, 2444; c) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27.
[3] a) M. Aufiero, T. Sperger, A. S. K. Tsang, F. Schoenebeck, Angew. Chem.
Int. Ed. 2015, 54, 10322; b) G. Yin, I. Kalvet, F. Schoenebeck, Angew.
Chem. Int. Ed. 2015, 54, 6809; c) T. Sperger, C. K. Stirner, F.
Schoenebeck, Synthesis 2017, 49, 115.
[14] a) M. Aufiero, T. Scattolin, F. Proutiere, F. Schoenebeck,
Organometallics 2015, 34, 5191; b) F. Proutiere, M. Aufiero, F.
Schoenebeck, J. Am. Chem. Soc. 2012, 134, 606. For applications of
labile Pd(I) complexes as precatalysts, see: a) T. Murahashi, H. Kurosawa,
Coord. Chem. Rev. 2002, 231, 207; b) D. P. Hruszkewycz, D. Balcells, L.
M. Guard, N. Hazari, M. Tilset, J. Am. Chem. Soc. 2014, 136, 7300; c) C.
Jimeno, U. Christmann, E. C. Escudero-Adan, R. Vilar, M. A. Pericas,
Chem. Eur. J. 2012, 18, 16510; d) T. Murahashi, K. Takase, M.-a. Oka,
S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 14908; e) U. Christmann, D. A.
Pantazis, J. Benet-Buchholz, J. E. McGrady, F. Maseras, R. Vilar, J. Am.
Chem. Soc. 2006, 128, 6376; f) J. P. Stambuli, R. Kuwano, J. F. Hartwig,
Angew. Chem. Int. Ed. 2002, 41, 4746; g) M. Prashad, X. Y. Mak, Y. Liu,
O. Repič, J. Org. Chem. 2003, 68, 1163; h) T. J. Colacot, Platinum Met.
Rev. 2009, 53, 183; i) L. L. Hill, J. L. Crowell, S. L. Tutwiler, N. L.
Massie, C. C. Hines, S. T. Griffin, R. D. Rogers, K. H. Shaughnessy, G.
A. Grasa, C. C. C. J. Seechurn, H. Li, T. J. Colacot, J. Chou, C. J.
Woltermann, J. Org. Chem. 2010, 75, 6477.
[15] a) S. Lin, D. E. Herbert, A. Velian, M. W. Day, T. Agapie, J. Am. Chem.
Soc. 2013, 135, 15830; b) M. A. Jalil, T. Nagai, T. Murahashi, H.
Kurosawa, Organometallics 2002, 21, 3317; c) H. Werner, H.-J. Kraus, J.
Chem. Soc., Chem. Commun. 1979, 814; d) D. P. Hruszkewycz, J. Wu, N.
Hazari, C. D. Incarvito, J. Am. Chem. Soc. 2011, 133, 3280; e) S. Ogoshi,
K. Tsutsumi, M. Ooi, H. Kurosawa, J. Am. Chem. Soc. 1995, 117, 10415;
f) R. Usón, J. Forniés, J. Fernández Sanz, M. A. Usón, I. Usón, S. Herrero,
Inorg. Chem. 1997, 36, 1912.
[4] For a discussion of catalyst versus precatalyst, see: R. S. Paton, J. M.
Brown, Angew. Chem. Int. Ed. 2012, 51, 10448.
[5] a) I. Kalvet, T. Sperger, T. Scattolin, G. Magnin, F. Schoenebeck, Angew.
Chem. Int. Ed. 2017, 56, 7078; b) I. Kalvet, G. Magnin, F. Schoenebeck,
Angew. Chem. Int. Ed. 2017, 56, 1581; c) F. Proutiere, E. Lyngvi, M.
Aufiero, I. A. Sanhueza, F. Schoenebeck, Organometallics 2014, 33,
[16] Complete crystallographic data can be found in the Supporting
Information. Additional crystallographic information has been submitted
in CIF format and is available from the CCDC, deposition number
1841115.
4
This article is protected by copyright. All rights reserved.