Bulky Monophosphine-Ligated Methylpalladium Complexes
Organometallics, Vol. 25, No. 19, 2006 4589
catalyzed coupling reactions of aryl halides with organometallic
species or amines were accelerated using bulky monophosphines
as ligands.24,30,34,51-53 Various bulky monophosphine-ligated
palladium complexes, LPd(R)X [L ) monophosphine, R ) aryl,
allyl, X ) halogen or heteroatom], were isolated as reaction
intermediates.37,51-53 In contrast to the intensive studies of aryl
or allyl complexes, corresponding alkyl complexes have never
been isolated54 until we have recently reported the syntheses of
methylpalladium complexes bearing a monodentate phosphine
ligand.55 Thus, we became interested in the structures and
catalytic properties of monophosphine-ligated alkylpalladium
complexes for the polymerization of functionalized norbornene.
Bulky monophosphine-ligated arylpalladium complexes,
(R3P)Pd(Ar)X,51-53 were reported to have a formal vacant site
to form a T-shape, three-coordinate structure around the
palladium atom. The vacant site may be useful for the
polymerization of methoxycarbonylnorbornene in the following
two points. (1) A large monomer, norbornene, can coordinate
to the vacant site to lead to a high catalytic activity. (2) The
monomer can approach the metal center even in the presence
of an intramolecularly coordinated functional group, such as
an ester group.
Here we report the syntheses and full structural characteriza-
tions of bulky monophosphine-ligated methylpalladium com-
plexes and their applications to homo- and copolymerization
of norbornene and/or methoxycarbonylnorbornene.
Results and Discussion
Syntheses of Monophosphine-Ligated Methylpalladium
Chloride Complexes 1a and 1b. The syntheses of monophos-
phine-ligated methylpalladium chloride complexes are shown
in Scheme 1. Simple ligand exchange reactions of Pd(cod)MeCl
(cod ) cyclooctadiene)56,57 with bulky phosphines tBu3P or (o-
tol)3P gave the corresponding methylpalladium chloride com-
plexes 1a and 1b, which were isolated as crystalline solids in
excellent yields.
(24) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem.
Soc. 2002, 124, 1162-1163.
Scheme 1. Syntheses of Methylpalladium Chloride
Complexes (1a and 1b)
(25) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem.
Soc. 2003, 125, 13978-13980.
(26) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2003, 125, 11818-11819.
(27) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653-6655.
(28) Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649-2652.
(29) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028-
13032.
(30) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 43, 1871-1876.
(31) Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005,
44, 6173-6177.
Single crystals of 1a and 1b suitable for X-ray crystal-
lographic analysis were obtained from a CCl4 solution of 1a or
a CHCl3 solution of 1b diffused by hexane at 0 °C. The crystal
structures of the complexes 1a and 1b are presented in Figures
1 and 2, respectively. Selected bond lengths and angles are
shown in Table 1. The X-ray crystallography revealed that
complex 1a has a three-coordinate T-shape structure stabilized
by a weak C-H agostic interaction between the palladium atom
and a C-H bond of the tert-butyl group. This is the first example
of a three-coordinate alkylpalladium complex. An electron-
donating methyl ligand was located trans to the formal vacant
site. These structural features are similar to those of the recently
(32) Charles, M. D.; Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7,
3965-3968.
(33) Vorogushin, A. V.; Huang, X. H.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 8146-8149.
(34) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J.
Am. Chem. Soc. 2005, 127, 4685-4696.
(35) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 9887-9888.
(36) Uozumi, Y.; Tanahashi, A.; Lee, S. Y.; Hayashi, T. J. Org. Chem.
1993, 58, 1945-1948.
(37) Hayashi, T.; Iwamura, H.; Naito, M.; Matsumoto, Y.; Uozumi, Y.;
Miki, M.; Yanagi, K. J. Am. Chem. Soc. 1994, 116, 775-776.
(38) Uozumi, Y.; Kitayama, K.; Hayashi, T.; Yanagi, K.; Fukuyo, E.
Bull. Chem. Soc. Jpn. 1995, 68, 713-722.
(39) Hayashi, T. J. Organomet. Chem. 1999, 576, 195-202.
(40) Hayashi, T. Acc. Chem. Res. 2000, 33, 354-362.
(41) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473-
1478.
(42) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am.
Chem. Soc. 1999, 121, 3224-3225.
1
reported aryl palladium complex Pd(PtBu3)PhBr.52 In the H
NMR spectrum at room temperature, the tert-butyl groups of
1a were all equivalent, indicating free rotation of both the Pd-P
and P-C bond on the NMR time scale. In contrast to 1a,
complex 1b has a Cl-bridged dinuclear structure where half of
the molecule is in the unit cell. Despite the bulkiness of the
ligands, bond lengths and angles around the central palladium
atom in 1b are similar to those of usual Cl-bridged dinuclear
complexes.58-62 One of the two Pd-Cl bonds, Pd(1)-Cl(1), is
shorter than Pd(1)-Cl(1*). Thus, one can expect the longer Pd-
(1)-Cl(1)* bond cleavage in 1b to lead to the equilibrium
(43) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.;
Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575-5580.
(44) Hartwig, J. F. Pure Appl. Chem. 1999, 71, 1417-1423.
(45) Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J. F. J. Am. Chem.
Soc. 2000, 122, 10718-10719.
(46) Lee, S.; Jorgensen, M.; Hartwig, J. F. Org. Lett. 2001, 3, 2729-
2732.
(47) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
8410-8411.
(48) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem.
2002, 67, 5553-5566.
(56) Rulke, R. E.; Ernsting, J. M.; Spek, A. L.; Elsevier, C. J.;
Vanleeuwen, P. W. N. M.; Vrieze, K. Inorg. Chem. 1993, 32, 5769-5778.
(57) Ladipo, F. T.; Anderson, G. K. Organometallics 1994, 13, 303-
306.
(58) Oliver, J. D.; Mullica, D. F.; Milligan, W. O. Inorg. Chem. 1982,
21, 3284-3286.
(59) Youngs, W. J.; Mahood, J.; Simms, B. L.; Swepston, P. N.; Ibers,
J. A.; Shang, M. Y.; Huang, J. L.; Lu, J. X. Organometallics 1983, 2, 917-
921.
(49) Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541-555.
(50) Kawashima, Y.; Okano, K.; Nozaki, K.; Hiyama, T. Bull. Chem.
Soc. Jpn. 2004, 77, 347-355.
(51) Stambuli, J. P.; Buhl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002,
124, 9346-9347.
(52) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F. J. Am.
Chem. Soc. 2004, 126, 1184-1194.
(53) Yamashita, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5344-
5345.
(60) Geib, S. J.; Rheingold, A. L. Acta Crystallogr., Sect. C 1987, 43,
1427-1428.
(54) Propargyl derivatives have been reported, see: Tsutsumi, K.; Ogoshi,
S.; Nishiguchi, S.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 1938-
1939.
(55) Yamashita, M.; Takamiya, I.; Jin, K.; Nozaki, K. J. Organomet.
Chem. 2006, 691, 3189-3195.
(61) Alyea, E. C.; Ferguson, G.; Malito, J.; Ruhl, B. L. Organometallics
1989, 8, 1188-1191.
(62) Kim, J. S.; Sen, A.; Guzei, I. A.; Siable-Sand, L. M.; Rheingold,
A. L. J. Chem. Soc., Dalton Trans. 2002, 4726-4731.