ORGANIC
LETTERS
2006
Vol. 8, No. 19
4319-4322
Diastereoselective Synthesis of
-Aryl-C-nucleosides from
1,2-Anhydrosugars
â
Ishwar Singh and Oliver Seitz*
Humboldt-UniVersita¨t zu Berlin, Institut fu¨r Chemie, Brook-Taylor-Strasse 2,
D-12489 Berlin, Germany
Received July 11, 2006
ABSTRACT
The cis opening of glycal epoxides with arylaluminum reagents provides strict stereocontrol in C-glycosylation.
â
-Aryl-C-2-deoxynucleosides
are obtained from known glycals by an epoxidation−glycosylation−deoxygenation sequence.
The replacement of nucleobases in oligodesoxynucleotides
by designed surrogates is a frequently applied approach to
confer new functions to DNA.1-4 Aromatic base surrogates
have been introduced with an aim to explore molecular
interactions in DNA-DNA and DNA-protein recognition
processes. For example, C-glycosidically linked aryl groups
have allowed the role of hydrogen bonding and stacking to
be discerned in DNA duplex formation.5-12 Aromatic base
surrogates can be accepted by DNA-polymerases and have
thus been used to extend the genetic code.5,6,13-15 We,16 and
others,17-20 have incorporated polycyclic aromatic hydro-
carbons as a means of studying the mechanism of DNA
methylation and DNA repair. Interesting opportunities also
are provided by fluorescent base surrogates which have utility
as spectroscopic probes.21
Most studies have relied on the use of â-configured 1-C-
aryl-2-deoxynucleotides, which mimic the anomeric stereo-
chemistry of natural nucleosides. A crucial step in the
synthesis of these building blocks is the â-selective incor-
poration of the aryl moiety.22 The commonly used coupling
of O-toluoyl-protected 1-chloro-2-deoxyriboside (Hoffer’s
chlorosugar)23 with arylcadmium, arylmagnesium, arylzinc,
or arylcopper reagents yields mixtures of anomers, with the
less desired R-anomer as the major compound.16,24,25 Sub-
(1) Kool, E. T. Acc. Chem. Res. 2002, 35, 936-943.
(2) Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002, 6, 775-793.
(3) Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7,
727-733.
(4) Marx, A.; Detmer, I.; Gaster, J.; Summerer, D. Synthesis 2004, 1-14.
(5) Matray, T. J.; Kool, E. T. J. Am. Chem. Soc. 1998, 120, 6191-6192.
(6) Matray, T. J.; Kool, E. T. Nature 1999, 399, 704-708.
(7) Brotschi, C.; Ha¨berli, A.; Leumann, C. J. Angew. Chem., Int. Ed.
2001, 40, 3012-3014.
(16) Beuck, C.; Singh, I.; Bhattacharya, A.; Heckler, W.; Parmar, V. S.;
Seitz, O.; Weinhold, E. Angew. Chem., Int. Ed. 2003, 42, 3958-3960.
(17) Sun, L. P.; Wang, M.; Kool, E. T.; Taylor, J. S. Biochemistry 2000,
39, 14603-14610.
(8) Singh, I.; Hecker, W.; Prasad, A. K.; Parmar, V. S.; Seitz, O. Chem.
Commun. 2002, 500-501.
(18) Jiang, Y. L.; Stivers, J. T.; Song, F. H. Biochemistry 2002, 41,
11248-11254.
(9) Brotschi, C.; Leumann, C. J. Angew. Chem., Int. Ed. 2003, 42, 1655-
1658.
(19) Kwon, K.; Jiang, Y. L.; Stivers, J. T. Chem. Biol. 2003, 10, 351-
(10) Lai, J. S.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 3040-3041.
(11) Liu, H. B.; Gao, J. M.; Maynard, L.; Saito, Y. D.; Kool, E. T. J.
Am. Chem. Soc. 2004, 126, 1102-1109.
359.
(20) Krosky, D. J.; Song, F. H.; Stivers, J. T. Biochemistry 2005, 44,
5949-5959.
(21) Gao, J. M.; Watanabe, S.; Kool, E. T. J. Am. Chem. Soc. 2004,
126, 12748-12749.
(22) Wu, Q. P.; Simons, C. Synthesis 2004, 1533-1553.
(23) Hoffer, M. Chem. Ber.-Recl. 1960, 93, 2777-2781.
(24) Ren, R. X. F.; Chaudhuri, N. C.; Paris, P. L.; Rumney, S.; Kool, E.
T. J. Am. Chem. Soc. 1996, 118, 7671-7678.
(25) Hocek, M.; Pohl, R.; Klepetarova, B. Eur. J. Org. Chem. 2005,
4525-4528.
(12) Brotschi, C.; Mathis, G.; Leumann, C. J. Chem. Eur. J. 2005, 11,
1911-1923.
(13) Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew. Chem., Int. Ed.
2000, 39, 990-1009.
(14) Ogawa, A. K.; Wu, Y. Q.; McMinn, D. L.; Liu, J. Q.; Schultz, P.
G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 3274-3287.
(15) Yu, C. Z.; Henry, A. A.; Romesberg, F. E.; Schultz, P. G. Angew.
Chem., Int. Ed. 2002, 41, 3841-3844.
10.1021/ol061701p CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/19/2006