diate.7 In all instances, the products consist of a mixture of
P-diastereoisomers.8 Diastereomerically pure dinucleoside
phosphoroselenoates9 and DNA hexamers containing a single
internucleotide phosphoroselenoate linkage10 were obtained
by HPLC resolution of diastereomeric mixtures. Recently,
enzymatic synthesis of stereodefined PSe-Oligo has been
published, based on the use of both SP and RP diastereomers
of TTPRSe and DNA polymerase.11 It has been found that
stereorandomal PSe-Oligos have a diminished hybridization
capability7b to complementary DNA and RNA templates, as
compared with both the unmodified and phosphorothioate
oligomers. Nonetheless, selenium-labeled biopolymers are
useful probes for their structural and functional analysis. We
synthesized P-stereodefined phosphoroselenoate oligodeox-
yribonucleotides by modification of our method for synthesis
of oligo(nucleoside phosphorothioate)s,12,13 which employs
diastereomerically pure 5′-O-DMT-nucleoside-3′-O-(2-thio-
4,4-pentamethylene-1,3,2-oxathiaphospholane) monomers 2
(X ) S, Scheme 1). The mechanism of the condensation
for preparation of P-stereodefined PSe-Oligos. Earlier, the
2-selena-1,3,2-oxathiaphospholane derivative of 5′-O-DMT-
thymidine (3a, B′ ) Thy, R ) H) allowed for the synthesis
of thymidyl dinucleoside phosphoroselenoate.14 Within the
present work, two sets of deoxyribonucleoside monomers
3a (see Table 1S, Supporting Information) and 3b (B )
Table 1. Yield and Chromatographic and Spectroscopic
Properties of Separated Monomers 3b
1
yielda FAB-MSb yield
δ 31P NMR JP,Se
nucleobase
CytBz
[%]
m/z
[%]
Rfc
[ppm]d
[Hz]
56
886.5
31
31
20
40
23
31
20
30
0.64
0.62
0.65
0.63
0.59
0.57
0.53
0.51
99.61
100.04
99.06
99.73
99.25
100.05
99.90
100.44
946
945
945
945
944
944
947
947
AdeBz
59
60
45
910,5
797,4
1087.8
Thy
GuaiBu,DPC
a Yield of isolated mixture of both diastereomers, calculated over starting
5′-O-DMT-N-protected nucleosides. b Calculated value (for 80Se) m/z 887,
911, 798, 1088, respectively. Technical parameters: Cs+, 13 keV, matrix-
3-nitrobenzyl alcohol, negative ions mode. c HP TLC plates; ethyl acetate/
butyl acetate 2:1 v/v (dABz, dCBz) or butyl acetate:benzene 1:1 v/v (T,
dGiBu,DPC) were used to elute the silica gel columns and to develop the
Scheme 1
1
plates. d 200 MHz (for H), CD3CN.
AdeBz, CytBz, GuaiBu,DPC, and Thy; Table 1) were synthesized
as depicted in Scheme 1. Either mercaptoethanol or (1-
sulfanylcyclohexyl)-methanol15 were reacted with PCl3 to
obtain the phospitylating reagents 4a or 4b, respectively.16
The details of conversion 4b f 5 f 3b are provided in
Supporting Information.
In the 31P NMR spectra recorded for 3a and 3b, the
resonances in the range of 99-100 ppm accompanied by
satellite doublets resulting from the direct 31P-77Se spin-
spin coupling (1JP,Se ) 945-954 Hz) were found. Unfortu-
nately, attempts at chromatographic separation of P-diaste-
step (Scheme 1S, Supporting Information) suggested that the
synthesis of pure P-diastereomers of nucleoside-3′-O-(2-
selena-1,3,2-oxathiaphospholane) 3 (X ) Se) should allow
reomers of the monomers 3a (B′ ) AdeBz, CytBz, GuaiBu
,
(4) Teplova, M.; Wilds, C. J.; Wawrzak, Z.; Tereshko, V.; Du, Q.;
Carrasco, N.; Huang, Z.; Egli, M. Biochimie 2002, 84, 849-858.
(5) Buzin, J.; Carrasco, N.; Huang, Z. Org. Lett. 2004, 6, 1099-1102.
(6) Ogilvie, K. K.; Nemer, M. J. Tetrahedron Lett. 1980, 21, 4145-
4148.
and Thy) on a silica gel column have failed. The “spiro”
monomers 3b (B′ ) CytBz, AdeBz, Thy) were much more
useful as we were able to separate amounts of 400-500 mg
on a single silica gel column (see Table 1). The guanosyl
monomer 3b (B′ ) GuaiBu) was resolved onto pure diaster-
eomers only after protection at the O6-site with diphenyl-
carbamoyl chloride (66% yield). The slow-eluting monomer
3b (B′ ) AdeBz, 95% diastereomeric purity) was used for
condensation with 3′-O-Ac-thymidine (5 equiv) in the
presence of DBU (1.05 equiv) in dry pyridine. The 31P NMR
spectrum recorded after 2 h showed the presence of
(7) (a) Stec, W. J.; Zon, G.; Egan, W.; Stec, B. J. Am. Chem. Soc. 1984,
106, 6077-6079. (b) Mori, K.; Boiziau, C.; Cazenave, C.; Matsukura, M.;
Subasinghe, C.; Cohen, J. S.; Broder, S.; Toulme, J. J.; Stein, C. A. Nucleic
Acid Res. 1989, 17, 8207-8219 (c) Bollmark, M.; Stawin´ski, J. Chem.
Commun. 2001, 771-772. (d) Stawin´ski, J.; Thelin, M. Tetrahedron Lett.
1992, 33, 7255-7258. (e) Holloway, G. A.; Pavot, C.; Scaringe, S. A.; Lu,
Y.; Rauchfuss, T. B. ChemBioChem 2002, 3, 1061-1065. (f) Potrzebowski,
M. J.; Błaszczyk, J.; Majzner, W. R.; Wieczorek, M. W.; Baraniak, J.; Stec,
W. J. Solid State Nucl. Magn. Reson. 1998, 11, 215-224. (g) Baraniak, J.;
Korczyn´ski, D.; Kaczmarek, R.; Stec, W. J. Nucleosides Nucleotides 1999,
18, 2147-2154.
(8) Stec, W. J.; Wilk, A. Angew. Chem. 1994, 106, 747-761; Angew.
Chem., Int. Ed. Engl. 1994. 33, 709-722.
1
resonances at 50.78 [95%, JP,Se ) 814 Hz] and 50.30 ppm
(9) Koziołkiewicz, M.; Uznan´ski, B.; Stec, W. J.; Zon, G. Chem. Scr.
1986, 26, 251-260.
(10) Wilds, C. J.; Pattanayek, R.; Pan, C.; Wawrzak, Z.; Egli, M. J. Am.
Chem. Soc. 2002, 124, 14910-14916.
(14) Misiura, K.; Pietrasiak, D.; Stec, W. J. J. Chem. Soc., Chem.
Commun. 1995, 613-614.
(11) Carrasco, N.; Huang, Z. J. Am. Chem. Soc. 2004, 126, 448-449.
(12) Stec, W. J.; Grajkowski, A.; Karwowski, B.; Kobylan´ska, A.;
Koziołkiewicz, M.; Misiura, K.; Okruszek, A.; Wilk, A.; Guga, P.;
Boczkowska, M. J. Am. Chem. Soc. 1995, 117, 12019-12029.
(13) Guga, P.; Okruszek, A.; Stec, W. J. in Topics in Current Chemistry;
Majoral, J. P.; Springer: Berlin, 2002; Vol. 220.
(15) Stec, W. J.; Karwowski, B.; Boczkowska, M.; Guga, P.; Koziołk-
iewicz, M.; Sochacki, M.; Wieczorek, M. W.; Błaszczyk, J. J. Am. Chem.
Soc. 1998, 120, 7156-7167.
(16) Guga, P.; Stec, W. J. In Current Protocols in Nucleic Acid
Chemistry; Beaucage, S. L.; Bergstrom, D. E.; Glick, G. D.; Jones, R. A.,
Eds.; John Wiley & Sons: Hoboken, NJ, 2003; pp 4.17.1-4.17.28.
3902
Org. Lett., Vol. 7, No. 18, 2005