S.-G. Kim et al. / Tetrahedron Letters 47 (2006) 6369–6372
6371
Table 2. Synthesis of (+)-exo-and (ꢀ)-endo-brevicomin derivatives
OH OH
R2
O
O
R2
R2
R1
R1
O
O
OH
OH
O
R1
R1
9
1
2
6
24
Entry
R1
R2
% Yielda
½aꢁD (CHCl3) (1 (exo)/2 (endo))
9
1 (exo)
2 (endo)
1
2
3
4
5
6
Et
Et
Et
Me
Ph
Bn
Me
Et
Bn
Et
Me
Me
80
76
95
60
62
75
30
26
60
24
4
45
50
+69.5 (c 1.00)b
+55.0 (c 1.00)
—
ꢀ78.8 (c 1.00)b
ꢀ56.3 (c 1.00)
(1/2 = 2/3)c
—
38
89
62
+56.4 (c 0.45)
ꢀ74.1 (c 0.90)
ꢀ102.3 (c 1.00)
ꢀ21.4 (c 1.00)
d
—
28
+62.9 (c 1.00)
a Yield was determined on the weight of isolated product.
b Et2O was used as solvent.
c Product could not be separated by column chromatography. The 1 (exo)/2 (endo) ratio was determined by 1H NMR spectra.
d Not determined.
Tetrahedron Lett. 2003, 44, 8293–8296; (d) Bøgevig, A.;
Acknowledgements
´
´
Sunden, H.; Codova, A. Angew. Chem., Int. Ed. 2004, 43,
1109–1112; (e) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.;
Shoji, M. Angew. Chem., Int. Ed. 2004, 43, 1112–1115; (f)
Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5374–5378; (g) Wang,
W.; Wang, J.; Li, H.; Liao, L. Tetrahedron Lett. 2004, 45,
7235–7238; (h) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.;
Hibino, K.; Shoji, M. J. Org. Chem. 2004, 69, 5966–5973;
This work was supported by the Ministry of Commerce,
Industry and Energy (TS-052-03) and we thank the Min-
istry of Science & Technology (KN-0528) for financial
support of this work.
References and notes
´
´
(i) Codova, A.; Sunden, H.; Bøgevig, A.; Johansson, M.;
Himo, F. Chem. Eur. J. 2004, 10, 3673–3684; For a recent
Review: (j) Merino, P.; Tejero, T. Angew. Chem., Int. Ed.
2004, 43, 2995–2997.
1. (a) Silverstein, R. M.; Brownlee, R. G.; Bellas, T. E.;
Wood, D. L.; Browne, L. E. Science 1968, 159, 889–891;
(b) Bedard, W. D.; Tilden, P. E.; Wood, D. L.; Silverstein,
R. M.; Brownlee, R. G.; Rodin, J. O. Science 1969, 164,
1284–1285; (c) Wood, D. L.; Browne, L. E.; Ewing, B.;
Lindahl, K.; Bedard, W. D.; Tilden, P. E.; Mori, K.;
Pitman, G. B.; Hughes, P. R. Science 1976, 192, 896–898.
7. Zhong, G. Chem. Commun. 2004, 606–607.
8. For recent total synthesis using organocatalyst, see: (a)
Kinsman, A. C.; Kerr, M. A. J. Am. Chem. Soc. 2003, 125,
14120–14125; (b) Andrey, O.; Vidonne, A.; Alexakis, A.
Tetrahedron Lett. 2003, 44, 7901–7904; (c) Austin, J. F.;
Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482–5487; (d)
Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett.
2004, 45, 9185–9188; (e) Kim, S.-G.; Kim, J.; Jung, H.
Tetrahedron Lett. 2005, 46, 2437–2439; (f) Chowdari, N.
S., ; Barbas, C. F., III. Org. Lett. 2005, 7, 867–870; (g)
Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 3696–3697.
´
2. Vite, J. P.; Billings, R. F.; Ware, C. W.; Mori, K.
Naturwissenschaften 1985, 72, 99–100.
3. Wasserman, H. H.; Barber, E. H. J. Am. Chem. Soc. 1969,
91, 3674–3675.
4. For recent reviews: (a) Mori, K. Eur. J. Org. Chem. 1998,
1479–1489; (b) Franke, W.; Schro¨der, W. Curr. Org.
Chem. 1999, 3, 407–443; (c) Mori, K. Acc. Chem. Res.
2000, 33, 102–110.
5. For recent syntheses of brevicomin, see: (a) Yusufog˘lu, A.;
Antones, S.; Scharf, H.-D. J. Org. Chem. 1986, 51, 3485–
3487; (b) Oehlschlager, A. C.; Johnston, B. D. J. Org.
Chem. 1987, 52, 940–943; (c) Matsumoto, K.; Suzuki, N.;
Ohta, H. Tetrahedron Lett. 1990, 31, 7163–7166; (d)
Vettel, S.; Diefenbach, L. A.; Haderlein, G.; Hammersch-
9. Attempts to obtain product 5 using other allylation
reagents (allylSiMe3/SnCl4, allylSiMe3/BF3ÆEt2O, allyl-
SnCl3 and allylSiCl3) failed to yield the product.
10. 5-(N-Phenyl-aminooxy)-hept-1-en-4-ol (5). To a solution
of nitrosobenzene 3 (1.07 g, 10 mmol) and butyraldehyde
4 (1.10 ml, 12 mmol) in DMSO (20 ml), L-proline (230 mg,
2.0 mmol) were added. After stirring for 15 min at room
temperature, allyl bromide (1.30 ml, 15 mmol), sodium
iodide (2.25 g, 15 mmol) and indium (1.72 g, 15 mmol)
was added and stirred for 10 min. The reaction mixture
was quenched with 0.5 M aqueous HCl solution and the
aqueous layer was extracted with EtOAc. The combined
organic layers were washed with brine, dried over anhy-
drous MgSO4 and concentrated in vacuo. The crude
residue was purified by flash column chromatography
(15% EtOAc/hexane) to afford 5 (1.57 g, 71%). The
diastereomeric ratio of the product was determined by
13C NMR spectra. The enantiomeric excess of syn- and
anti-diastereomer was measured by HPLC analysis after
the separation of the isomer using column chromato-
graphy. syn-(R,R)-5: 1H NMR (200 MHz, CDCl3) 7.29 (t,
}
midt, S.; Kuhling, K.; Mofid, M.-R.; Zimmermann, T.;
Knochel, P. Tetrahedron: Asymmetry 1997, 8, 779–800; (e)
Burke, S. D.; Muller, N.; Beaudry, C. M. Org. Lett. 1999,
1, 1827–1829; (f) Hu, S.; Jayaraman, S.; Oehlschlager, A.
C. J. Org. Chem. 1999, 64, 2524–2526; (g) Gallos, J. K.;
Kyradjoglou, L. C.; Koftis, T. V. Heterocyles 2001, 55,
781–784; (h) Mayer, S. F.; Mang, H.; Steinreiber, A.; Saf,
R.; Faber, K. Can. J. Chem. 2002, 80, 362–369; (i) Kumar,
D. N.; Rao, B. V. Tetrahedron Lett. 2004, 45, 2227–2229;
(j) Prasad, K. R.; Angarasan, P. Tetrahedron: Asymmetry
2005, 16, 3951–3953.
6. (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247–4250;
(b) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan,
D. M. C. J. Am. Chem. Soc. 2003, 125, 10808–10809; (c)
Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M.