Chemical Radiation Studies
FULL PAPER
[6] C. Chatgilialoglu, C. Caminal, A. Altieri, G. C. Vougioukalakis,
Q. G. Mulazzani, T. Gimisis, M. Guerra, J. Am. Chem. Soc. 2006,
128, in press.
[7] L. B. Jimenez, S. Encinas, M. A. Miranda, M. L. Navacchia, C. Chat-
gilialoglu, Photochem. Photobiol. Sci. 2004, 3, 1042–1046.
[8] T. Kimura, K. Kawai, S. Tojo, T. Majima, J. Org. Chem. 2004, 69,
1169–1173.
[9] M. de ChampdorØ, L. De Napoli, D. Montesarchio, G. Piccialli, C.
Caminal, Q. G. Mulazzani, M. L. Navacchia, C. Chatgilialoglu,
Chem. Commun. 2004, 1756–1757.
[27] T. Watanabe, K. Honda, J. Phys. Chem. 1982, 86, 2617–2619.
[28] For kinetic details of a similar mechanistic scheme, see: C. A. Kelly,
E. L. Blinn, N. Camaioni, M. DꢀAngelantonio, Q. G. Mulazzani,
Inorg. Chem. 1999, 38, 1579–1584; erratum: C. A. Kelly, E. L.
Blinn, N. Camaioni, M. DꢀAngelantonio, Q. G. Mulazzani, Inorg.
Chem. 1999, 38, 2756.
[29] G. E. Adams, R. L. Willson, Trans. Faraday Soc. 1969, 65, 2981–
2987.
[30] S. Steenken, M. J. Davies, B. C. Gilbert, J. Chem. Soc. Perkin Trans.
2 1986, 1003–1010.
[10] A. Manetto, S. Breeger, C. Chatgilialoglu, T. Carell, Angew. Chem.
2006, 118, 325–328; Angew. Chem. Int. Ed. 2006, 45, 318–321.
[11] For selected recent papers on the transfer of excess electrons in
DNA using 5-bromouracil moieties as the detection system, see: T.
Ito, S. E. Rokita, J. Am. Chem. Soc. 2003, 125, 11480–11481; T. Ito,
S. E. Rokita, Angew. Chem. 2004, 116, 1875–1878; Angew. Chem.
Int. Ed. 2004, 43, 1839–1842; T. Ito, S. E. Rokita, J. Am. Chem. Soc.
2004, 126, 15552–15559; C. Wagner, H.-A. Wagenknecht, Chem.
Eur. J. 2005, 11, 1871–1876; P. Kaden, E. Mayer-Enthart, A. Trifo-
nov, T. Fiebing, H.-A. Wagenknecht, Angew. Chem. 2005, 117,
1620–1623; Angew. Chem. Int. Ed. 2005, 44, 1636–1639; E. Mayer-
Enthart, P. Kaden, H.-A. Wagenknecht, Biochemistry 2005, 44,
11749–11757.
[31] J. Grodkowski, P. Neta, C. J. Schlesener, J. K. Kochi, J. Phys. Chem.
1985, 89, 4373–4378.
[32] g-Irradiation of aqueous solutions of K4[Fe(CN)6] (4 mm) (reduc-
tant) continuously generates micromolar levels of the oxidant
[Fe(CN)6]3ꢀ. Such a low concentration of oxidant should allow radi-
cal 10 to cyclize to radical 11 before being oxidized, thus improving
the overall reaction performance.[2]
[33] A. Romieu, D. Gasparutto, J. Cadet, Chem. Res. Toxicol. 1999, 12,
412–421.
[34] a) L. P. Candeias, S. Steenken, J. Phys. Chem. 1992, 96, 937–944;
b) L. P. Candeias, P. Wolf, P. OꢀNeill, S. Steenken, J. Phys. Chem.
1992, 96, 10302–10307.
[35] D. Enders, I. Breuer, E. Drosdow, Synthesis 2005, 3239–3244.
[36] G. V. Buxton, Q. G. Mulazzani in Electron Transfer in Chemistry.
Vol. 1: Principles, Theories, Methods and Techniques (Ed.: V. Balza-
ni), Wiley-VCH, Weinheim, 2001, pp. 503–557.
[37] J. W. T. Spinks, R. J. Woods, An Introduction to Radiation Chemistry,
3rd ed., Wiley, New York, 1990, p. 100.
[12] R. E. Holmes, R. K. Robins, J. Am. Chem. Soc. 1964, 86, 1242–1245.
[13] F. Seela, C. Mittelbach, Nucleosides Nucleotides 1999, 18, 425–441.
[14] C. T. Aravindakumar, H. Mohan, M. Mudaliar, B. S. M. Rao, J. P.
Mittal, M. N. Schuchmann, C. von Sonntag, Int. J. Radiat. Biol. 1994,
66, 351–365.
[15] a) L. P. Candeias, S. Steenken, J. Am. Chem. Soc. 1989, 111, 1094–
1099; b) S. V. Jovanovic, M. G. Simic, J. Phys. Chem. 1986, 90, 974–
978.
[16] a) G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J.
Phys. Chem. Ref. Data 1988, 17, 513–886; b) A. B. Ross, W. G. Mal-
lard, W. P. Helman, G. V. Buxton, R. E. Huie, P. Neta, NDRL-NIST
Solution Kinetic Database—Version 3, Notre Dame Radiation Labo-
ratory, Notre Dame, IN and NIST Standard Reference Data, Gai-
thersburg, MD, 1998.
[38] A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
[39] A. D. Becke, J. Chem. Phys. 1996, 104, 1040–1046.
[40] Y. Zhao, B. J. Lynch, D. G. Truhlar, J. Phys. Chem. A 2004, 108,
2715–2719.
[41] Gaussian 03, Revision B.5, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.
G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefa-
nov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
[42] P. C. Hariharan, J. A Pople, Theor. Chim. Acta 1973, 28, 213–222.
[43] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon,
D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
[44] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, J.
Comput. Chem. 1983, 4, 294–301.
[17] L. Wojnꢂrovits, E. Takꢂcs, K. Dajka, S. S. Emmi, M. Russo, M.
DꢀAngelantonio, Radiat. Phys. Chem. 2004, 69, 217–219.
C
[18] The rate constants for the reaction of the HO radical with inosine is
[16]
4.4109 mꢀ1 sꢀ1
.
A similar value can be assumed for the analogous
reaction of 8-bromo derivatives 8 or 12. Therefore, more than 97%
C
of HO radicals are expected to be scavenged by tBuOH when [8] or
[12]ꢂ110ꢀ3 m.
[19] G. L. Hug, Natl. Stand. Ref. Data Ser. (US Natl. Bur. Stand.) 1981,
69, 1–159.
[20] For example, see: G. V. Buxton, Q. G. Mulazzani, A. B. Ross, J.
Phys. Chem. Ref. Data 1995, 24, 1055–1349.
[21] a) All redox potentials are versus NHE; b) P. Wardman, J. Phys.
Chem. Ref. Data 1989, 18, 1637–1755.
[22] S. Fujita, S. Steenken, J. Am. Chem. Soc. 1981, 103, 2540–2545; S.
Steenken, A. J. S. C. Vieira, Angew. Chem. 2001, 113, 581–583;
Angew. Chem. Int. Ed. 2001, 40, 571–573.
[23] P. S. Rao, E. Hayon, J. Phys. Chem. 1975, 79, 1063–1066.
[24] Generally, electrophilic-type alkyl radicals, such as a-acyl deriva-
[45] P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chem. Phys.
Lett. 1992, 197, 499–505.
[46] M. Guerra, Chem. Phys. Lett. 1990, 167, 315–319.
[47] M. Guerra, J. Phys. Chem. A 1999, 103, 5983–5988.
tives, react with TMPD with a rate constant of ꢁ108 mꢀ1 sꢀ1. The rate
8
constant of H with TMPD is reported to be 2.210 mꢀ1 sꢀ1 at pH 1
C
where TMPD is doubly protonated.[16]
[25] Under the conditions employed: 1) the competition between 12 and
ꢀ
TMPD for eaq is well in favor of 12 because k(eaqꢀ+TMPD)=9.1
107 mꢀ1 sꢀ1, (ref. [23]), and [12]ꢃ10[TMPD], and 2) although the
[16]
rate constant of HO with TMPD is 1.01010 mꢀ1 sꢀ1
,
Received: January 10, 2006
Published online: July 5, 2006
C
C
the HO radi-
cals are still scavenged efficiently by tBuOH.[18]
[26] K. E. Hausler, W. J. Lorenz in Standard Potentials in Aqueous Solu-
tion (Eds.: A. J. Bard, R. Parsons, J. Jordan), Marcel Dekker, New
York, 1985, p. 408.
Please note: Minor changes have been made to this manuscript since its
publication in Chemistry—A European Journal Early View. The Editor.
Chem. Eur. J. 2006, 12, 7684 – 7693
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7693