analysis leading to Van’t Hoff enthalpy changes for duplex melting DmH
given in Table 2.
" Order–disorder transitions, including duplex melting, are accompanied
by a positive heat capacity change. See ref. 23.
(i.e. cm:x0–1). Remarkably, DmH (and therefore the entropy
change for melting, DmS) at the respective Tms remains virtually
constant upon introduction of the analogue for ODN c:x0–4. This
behaviour is more analogous to that resulting from the introduc-
tion of methyl substituents in a DNA duplex rather than the
introduction of propynes (vide supra).
1 S. Verma and F. Eckstein, Annu. Rev. Biochem., 1998, 67, 99.
2 M. C. Pirrung, Angew. Chem., Int. Ed., 2002, 41, 1277; R. J. Lipshutz,
S. P. A. Fodor, T. R. Gingeras and D. J. Lockhart, Nat. Genet., 1999,
21, 20; S. C. Case-Green, K. U. Mir, C. E. Pritchard and E. M. Southern,
Curr. Opin. Chem. Biol., 1998, 2, 404; S. P. A. Fodor, J. L. Read,
M. C. Pirrung, L. Stryer, A. T. Lu and D. Solas, Science, 1991, 251, 767.
3 J. Kurreck, Eur. J. Biochem., 2003, 270, 1628; D. Praseuth,
A. L. Guieysse and C. He´le`ne, Biochim. Biophys. Acta, 1999, 1489,
181; E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543; S. Buchini
and C. J. Leumann, Curr. Opin. Chem. Biol., 2003, 7, 717; P. Herdewijn,
Antisense Nucleic Acid Drug Dev., 2000, 10, 297.
4 B. C. Froehler, S. Wadwani, T. J. Terhorst and S. R. Gerrard,
Tetrahedron Lett., 1992, 33, 5307.
5 T. W. Barnes and D. H. Turner, J. Am. Chem. Soc., 2001, 123, 4107.
6 J. I. Gyi, D. Q. Gao, G. L. Conn, J. O. Trent, T. Brown and A. N. Lane,
Nucleic Acids Res., 2003, 31, 2683.
7 J. Booth, T. Brown, S. J. Vadhia, O. Lack, W. J. Cummins, J. O. Trent
and A. N. Lane, Biochemistry, 2005, 44, 4710; L. E. Heystek,
H. Q. Zhou, P. Dande and B. Gold, J. Am. Chem. Soc., 1998, 120,
12165; T. Kottysch, C. Ahlborn, F. Brotzel and C. Richert, Chem.–Eur.
J., 2004, 10, 4017; F. Seela, N. Ramzaeva, P. Leonard, Y. Chen,
H. Debelak, E. Feiling, R. Kroschel, M. Zulauf, T. Wenzel, T. Frohlich
and M. Kostrzewa, Nucleosides Nucleotides Nucleic Acids, 2001, 20,
1421.
The similarity in enthalpies and entropies of duplex melting may
seem to be in contradiction with the distinctly different duplex
stabilities as inferred from the increasing Tm for ODN c:x0–4.
However, it should be kept in mind that DmH and TmDmS relate to
the Tm values for the respective oligonucleotides, whereas for a full
thermodynamic analysis, enthalpy and entropy changes for
different oligonucleotides should be compared at a common
reference temperature, taking heat capacity changes into
account."23 Nevertheless, considering that for the current system,
duplex stabilisation is not resulting from a more favourable
enthalpy of duplex formation, enhanced stacking interactions are
unlikely to be the cause of duplex stabilisation. However, classical
(entropy driven) hydrophobic interactions,24 single strand pre-
organisation5,12,25 and even duplex stabilisation by the reduction of
conformational restrictions (through the availability of more
hydrophobic surface available for stacking interactions) can all
be reconciled with the observed thermodynamics.
8 J. A. Brazier, T. Shibata, J. Townsley, B. F. Taylor, E. Frary,
N. H. Williams and D. M. Williams, Nucleic Acids Res., 2005, 33, 1362.
9 F. Seela and K. I. Shaikh, Tetrahedron, 2005, 61, 2675.
10 F. Seela and M. Zulauf, Helv. Chim. Acta, 1999, 82, 1878.
11 F. Seela, H. Driller, W. Herdering and E. Declercq, Nucleosides
Nucleotides, 1988, 7, 347.
12 E. T. Kool, Chem. Rev., 1997, 97, 1473.
13 D. Graham, J. A. Parkinson and T. Brown, J. Chem. Soc., Perkin
Trans. 1, 1998, 1131.
The duplex stabilisation arising from the introduction of
analogue 3 into ODNs is in sharp contrast to the effects of
introducing analogue 4. Presumably the geometry of the base pair
formed between 4 and G is somewhat perturbed from that
expected for a standard Watson–Crick base pair which in turn
affects hydrogen bonding and/or base-pair stacking, thereby
decreasing the Tm of the duplex.
14 H. H. Klump and R. Loffler, Biol. Chem. Hoppe-Seyler, 1985, 366, 345;
L. E. Xodo, G. Manzini, F. Quadrifoglio, G. van der Marel and J. van
Boom, Nucleic Acids Res., 1991, 19, 1505.
15 S. E. Lee, J. S. Vyle, D. M. Williams and J. A. Grasby, Tetrahedron
Lett., 2000, 41, 267.
16 S. E. Lee, A. Sidorov, T. Gourlain, N. Mignet, S. J. Thorpe, J. A. Brazier,
M. J. Dickman, D. P. Hornby, J. A. Grasby and D. M. Williams,
Nucleic Acids Res., 2001, 29, 1565.
In conclusion we have prepared and characterised ODNs
containing 7,8-dihydropyrido[2,3-d]pyrimidin-2-one and shown
that the analogue confers a greatly enhanced duplex stability.
The origins of this enhanced stability, however, require further
investigation.
17 A. Simmonds, A. Hamilton, C. L. Smith, D. Loakes, D. M. Brown,
F. Hill, S. Kumar, S. Nampalli and M. McDougall, in Br. Pat. WO 99/
06422, 1999.
18 J. S. Woo, R. B. Meyer and H. B. Gamper, Nucleic Acids Res., 1996, 24,
2470.
19 D. A. Berry, K. Y. Jung, D. S. Wise, A. D. Sercel, W. H. Pearson,
H. Mackie, J. B. Randolph and R. L. Somers, Tetrahedron Lett., 2004,
45, 2457.
20 H. Inoue, A. Imura and E. Ohtsuka, Nucleic Acids Res., 1985, 13, 7119.
21 G. S. Kell, J. Chem. Eng. Data, 1967, 12, 66.
22 L. A. Marky and K. J. Breslauer, Biopolymers, 1987, 26, 1601.
23 A. Cooper, Biophys. Chem., 2000, 85, 25.
24 W. Blokzijl and J. Engberts, Angew. Chem., Int. Ed. Engl., 1993, 32,
1545.
25 P. M. McTigue, R. J. Peterson and J. D. Kahn, Biochemistry, 2004, 43,
5388.
26 F. Seela and M. Zulauf, Chem.–Eur. J., 1998, 4, 1781.
27 E. C. W. Clarke and D. N. Glew, J. Chem. Soc., Faraday Trans., 1966,
62, 539.
Notes and references
{ It should be noted that the effect of introducing substituents on the
thermodynamics of duplex formation depends markedly on whether a
DNA–DNA, DNA–RNA hybrid or an RNA–RNA duplex is involved
(ref. 6). For example, methylating uridine in DNA–RNA hybrids leads to a
less favourable enthalpy for duplex formation whereas methylating uridine
in RNA–RNA duplexes leads to a more favourable enthalpy for duplex
formation. Still, methylation stabilises both types of duplex. For DNA–
RNA hybrids, contradictory reports on the thermodynamic reasons for
enhanced duplex stability upon introduction of propyne have been
published (refs. 5 and 6). In addition, different buffers appear to have an
impact on the observed thermodynamics, e.g. refs. 10, 26.
§ Including heat capacity changes in the analysis by using the Clarke–Glew
equations27 does not significantly alter the optimised value for enthalpy
changes for duplex formation and the narrow temperature ranges
(individual transitions span temperature ranges of no more than 15 uC)
prevent us from determining accurate values for DmCp. Heat capacity
changes for duplex formation were therefore ignored in the final data
3518 | Chem. Commun., 2006, 3516–3518
This journal is ß The Royal Society of Chemistry 2006