the use of simple peptides in sensors requires the incorporation
of high-affinity metal-binding sites into peptides with defined
structures. Nonstandard amino acids can also be used to integrate
additional functionality or allow performance monitoring.4
Moreover, the incorporation of nonproteinogenic R-amino acids
has been found to improve the medical properties of numerous
peptide and peptidomimetic drugs.5 Finally, a number of
nonnatural amino acids are themselves biologically active,6 and
others can act as organocatalysts in chemical synthesis.7 For
all these reasons, the development of new synthetic routes to
enantiopure nonproteinogenic R-amino acids is of great current
chemical interest.8,9 Although they can be obtained by a number
of methods, including biotransformation, the use of chiral
auxiliaries, and asymmetric catalysis, there is a continuing need
for mild procedures that are compatible with a wide range of
functionalities and are well-suited for library synthesis. Perhaps
the most powerful method is the modification of available amino
acids equivalents, such as radical, cationic, and anionic alanine
and homoalanine or bishomoalanine equivalents, by means of
transition metal mediated cross-couplings.10 Specifically, since
Pd(0)-catalyzed cross-couplings are both selective and compat-
ible with a wide range of functional groups, and since the Suzuki
reaction has the drawback of requiring prior preparation of the
appropriate organoborane,11 we decided to employ Sonogashira-
type reactions for the crucial cross-coupling step.12,13
Synthesis of ω-(Hetero)arylalkynylated r-Amino
Acid by Sonogashira-Type Reactions in Aqueous
Media
Roberto J. Brea, M. Pilar Lo´pez-Deber, Luis Castedo, and
Juan R. Granja*
Departamento de Qu´ımica Orga´nica e Unidade Asociada o´
C.S.I.C., Facultade de Qu´ımica, UniVersidade de Santiago,
15782 Santiago de Compostela, Spain
ReceiVed June 23, 2006
Mild conditions are described that allow the palladium-
catalyzed cross-coupling of CR-alkynylated glycine with a
wide variety of electron-rich and electron-poor aryl and
heteroaryl halides in aqueous media.
(4) (a) Bark, S. J.; Kent, S. B. H. FEBS Lett. 1999, 460, 67-76. (b)
Duhamel, J.; Kanagalingam, S.; O’Brien, T. J.; Ingratta, M. W. J. Am. Chem.
Soc. 2003, 125, 12810-12822. (c) Gochin, M.; Guy, R. K.; Case, M. A.
Angew. Chem., Int. Ed. 2003, 42, 5325-5328. (d) Enander, K.; Dolphin,
G. T.; Baltzer, L. J. Am. Chem. Soc. 2004, 126, 4464-4465.
(5) (a) Roberts, D. C.; Vellaccio, F. In The Peptides; Gross, E.,
Meienhofer, J., Eds.; Academic Press: New York, 1983; Chapter 6. (b)
Fauche´re, J.-L.; Thurieau, C. AdV. Drug Res. 1992, 23, 127-159.
(6) Barrett, G. C.; Elmore, D. T. Amino Acids and Peptides; University
Press: Cambridge, U.K., 1998. Esposito, A.; Piras, P. P.; Ramazzotti, D.;
Taddei, M. Org. Lett. 2001, 3, 3273-3275.
(7) (a) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719-724. (b)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138-5175.
(8) (a) Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; C´ısarova, I.;
Ezernitskaya, M. G.; Haratyunyan, S. R.; Hrdina, R.; Kagan, H. B.;
Kocovsky, P.; Kochetkov, K. A.; Larionov, O. V.; Lyssenko, K. A.; North,
M.; Pola´sek, M.; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskocil, S. J.
Am. Chem. Soc. 2003, 125 12860-12871. (b) Cativiela, C.; D´ıaz-de-
Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645-732. (c) Ryan,
S. J.; Zhang, Y.; Kennan, A. J. Org. Lett. 2005, 7, 4765-4767.
(9) Barrett, G. C.; Davies, J. S. In Amino Acids, Peptides, and Proteins;
The Royal Society of Chemistry: Cambridge, U.K., 2003; Vol. 34.
(10) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Dieder-
ich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2.
(11) (a) Miyaura, N. Top. Curr. Chem. 2002, 219, 11-59. (b) Suzuki,
A. J. Organomet. Chem. 1999, 576, 147-168. (c) Collier, P. N.; Campell,
A. D.; Patel, I.; Raynham, T. M.; Taylor, R. J. K. J. Org. Chem. 2002, 67,
1802-1815.
(12) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
50, 4467-4470. (b) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28,
3313-3315. (c) For a recent review, see: Sonogashira, K. In Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-
Interscience: New York, 2002; pp 493-529. (d) Negishi, E.; Anastasia,
L. Chem. ReV. 2003, 103, 1979-2017. (e) Tykwinski, R. R. Angew. Chem.,
Int. Ed. 2003, 42, 1566-1568.
Introduction
The main goal of the de novo design of polypeptides is the
preparation of short synthetic motifs with defined secondary
and tertiary structure that are able to perform functions similar
to those of large natural proteins.1 For small peptides, this
generally requires conformational restriction by either disulfide
bridges or metal binding,2 which in some cases can be achieved
by the introduction of nonnatural amino acids.3 For instance,
(1) For research on the design of peptide sequences with a predictable
three-dimensional structure, see for example: (a) Struthers, M. D.; Cheng,
R. P.; Imperiali, B. Science 1996, 271, 342-345. (b) Zondlo, N. J.;
Schepartz, A. J. Am. Chem. Soc. 1999, 121, 6938-6939. (c) De Alba, E.;
Santoro, J.; Rico, M.; Jime´nez, M. A. Protein Sci. 1999, 8, 854-865. (d)
Baltzer, L.; Nilsson, H.; Nilsson, J. Chem. ReV. 2001, 101, 3153-3163.
(e) Pokala, N.; Handel, T. M. J. Struct. Biol. 2001, 134, 269-281. (f) Yadav,
M. K.; Redman, J. E.; Leman, L. J.; AÄ lvarez-Gutie´rrez, J. M.; Zhang, Y.;
Scout, C. D.; Ghadiri, M. R. Biochemistry 2005, 44, 9723-9732.
(2) (a) Handel, T. M.; Williams, S. A.; DeGrado, W. F. Science 1993,
259, 1288-1293. (b) Ghadiri, M. R.; Case, M. A. Angew. Chem., Int. Ed.
Engl. 1993, 32, 1594-1597. (c) Barthe, P.; Rochette, S.; Vita, C.;
Roumestand, C. Protein Sci. 2000, 9, 942-955. (d) Neidigh, J. W.;
Fesinmeyer, R. M.; Andersen, N. H. Nat. Struct. Biol. 2002, 9, 425-430.
(e) Kelso, M. J.; Beyer, R. L.; Hoang, H. N.; Lakdawala, A. S.; Snyder, J.
P.; Oliver, W. V.; Robertson, T. A.; Appleton, T. G.; Fairlie, D. P. J. Am.
Chem. Soc. 2004, 126, 4828-4842.
(3) (a) Imperiali, B.; Prins, T. J.; Fisher, S. L. J. Org. Chem. 1993, 58,
1613-1616. (b) Rajashankar, K. R.; Ramakumar, S.; Jain, R. M.; Chauhan,
V. S. J. Am. Chem. Soc. 1995, 117, 10129-10130. (c) Nowick, J. S.; Chung,
D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc.
2000, 122, 7654-7661. (d) Bilgic¸er, B.; Kumar, K. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 15324-15329.
(13) (a) For a copper-free Sonogashira coupling, see: Soheili, A.;
Albaneze-Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett.
2003, 5, 4191-4194. (b) For Sonogashira cross-coupling of unactivated
alkyl halides using carbene ligands, see: Eckhardt, M.; Fu, G. C. J. Am.
Chem. Soc. 2003, 125, 13642-13643.
10.1021/jo061300n CCC: $33.50 © 2006 American Chemical Society
Published on Web 09/07/2006
7870
J. Org. Chem. 2006, 71, 7870-7873