A R T I C L E S
Michrowska et al.
Figure 2. Highly active EWG-substituted catalysts 6a and 6b.
mobilized homogeneous catalysts.9 The attachment ought to be
strong enough to suppress leaching of the catalyst. After
inactivation of the catalyst it is beneficial if it can be removed
from the solid phase and the reactor can be reactivated with
fresh catalyst by simple washing protocols. Thus, this concept
avoids physical removal of the fixed bed inside the reactor which
can be costly. Therefore, this strategy is of major relevance for
industrial applications, particularly when continuous-flow pro-
cesses with immobilized homogeneous catalysts or enzymes are
pursued for which the first examples are operating. Indeed, this
concept has been successfully demonstrated in research labo-
ratories and even in industrial processes for immobilized
enzymes.10
Some concepts for the noncovalent attachment of chemical
catalysts to solid supports have been developed.11 Recently,
Reiser and Werner disclosed electrostatic binding (Nafion
sulfonic acid) of azabis(oxazoline)-copper complexes and their
use in asymmetric cyclopropanations.12 Additionally, task-
specific ionic liquids can be loaded as liquid films on polar
supports such as silica gel.13 These polar layers have been used
to immobilize ionic transition metal catalyst14a,b and polar
organocatalysts.14c
Figure 1. Ruthenium-based catalysts 1-5 for olefin metathesis (Cy )
cyclohexyl, Mes ) 2,4,5-trimethylphenyl).
made to immobilize Grubbs-type carbenes 1-2 on solid or
soluble supports either via ligand L (Figure 1) or via the carbene
moiety.4 Hoveyda established catalysts 3-45 as remarkably
robust complexes promoting olefin metathesis by a release/return
mechanism.6 Recently, various Hoveyda-Grubbs carbenes were
attached to different resins or soluble supports preferentially
via the 2-alkoxybenzylidene fragment.7 Our group has recently
presented a Hoveyda-Grubbs complex covalently bound to a
PS-DES resin.7b
However, for practicability reasons noncoValent attachment
of catalysts to a solid phase is highly desirable. The possibility
of reloading the solid phase opens the door for utilizing solid
supports which have been specially designed for the individual
catalytic process without considering their costs as much as
would be relevant for covalently bound catalysts. Indeed, this
concept should be of particular relevance in continuous-flow
processes8 using reactors filled with heterogeneous or im-
(3) Reviews on polymer-bound reagents and catalysts: (a) Solodenko, W.;
Frenzel, T.; Kirschning, A. In Polymeric Materials in Organic Synthesis
and Catalysis; Buchmeiser, M. R., Ed.; Wiley-VCH: Weinheim, 2003; pp
201-240. (b) Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron 2001,
57, 4637-4662. (c) Baxendale, I. R.; Storer, R. I.; Ley, S V. In Polymeric
Materials in Organic Synthesis and Catalysis; Buchmeiser, M. R., Ed.;
Wiley-VCH: Weinheim, 2003; pp 53-132. (d) Kirschning, A.; Monen-
schein, H.; Wittenberg, R. Angew. Chem., Int. Ed. 2001, 40, 650-679. (e)
Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.
Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J.
Chem. Soc., Perkin Trans. 1 2000, 3815-4195. (f) Drewry, D. H.; Coe,
D. M.; Poon, S. Med. Res. ReV. 1999, 19, 97-148.
(4) Reviews: (a) Kingsbury, J. S.; Hoveyda, A. H. In Polymeric Materials in
Organic Synthesis and Catalysis; Buchmeiser, M. R., Ed.; Wiley-VCH:
Weinheim, 2003; p 467. (b) Buchmeiser, M. R. New J. Chem. 2004, 28,
549-557.
(5) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H.
J. Am. Chem. Soc. 1999, 121, 791-799. (b) Garber, S. B.; Kingsbury, J.
S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-
8179.
Recently we have successfully tested the concept of nonco-
valent attachment in the preparation of Grubbs III generation
catalyst 5 coordinatiVely bound to polyvinyl pyridine resin.15
In this paper we describe a straightforward noncovalent
procedure for immobilization of a new Hoveyda-type Ru
complex by means of electrostatic binding.
2. Results and Discussion
Catalyst Design. We demonstrated that the 5- and 4-nitro-
substituted complexes 6a and 6b (Figure 2) initiate olefin
metathesis dramatically faster than the parent Hoveyda-Grubbs
catalyst 4.16,17 We proposed that the electron-withdrawing
(EWG) nitro group in the benzylidene fragment of 6a and 6b
would weaken OfRu chelation and facilitate faster initiation
of the catalytic cycle.16,17
(6) (a) For a short review, see Hoveyda, A. H.; Gillingham, D. G.; Van
Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J.
P. A. Org. Biomol. Chem. 2004, 2, 1-16.
(7) For syntheses of supported variants of 3-4, see inter alia: (a) Kings-
bury, J. S.; Garber, S. B.; Giftos, J. M.; Gray, B. L.; Okamoto, M. M.;
Farrer, R. A.; Fourkas, J. T.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001,
40, 4251-4256. (b) Grela, K.; Tryznowski, M.; Bieniek, M. Tetrahedron
Lett. 2002, 43, 9055-9059. (c) Connon, S. J.; Dunne, A. M.; Blechert, S.
Angew. Chem., Int. Ed. 2002, 41, 3835-3838. (d) Dowden, J.; Savovic, J.
Chem. Commun. 2001, 37-38. (e) Yao, Q. Angew. Chem., Int. Ed. 2000,
39, 3896-3898. (f) Yao, Q.; Zhang, Y. Angew. Chem., Int. Ed. 2003, 42,
3395-3398. (g) Connon, S. J.; Blechert, S. Bioorg. Med. Chem. Lett. 2002,
12, 1873-1876. (h) Yao, Q.; Zhang, Y. J. Am. Chem. Soc. 2004, 12, 74-
75. (i) Yao, Q.; Motta, A. R. Tetrahedron Lett. 2004, 45, 2447-2451. (j)
Yang, L.; Mayr, M.; Wurst, K.; Buchmeiser M. R. Chem. Eur. J. 2004,
10, 5761-5770. (k) Krause, J. O.; Nuyken, O.; Wurst, K.; Buchmeiser,
M. R. Chem. Eur. J. 2004, 10, 777-784. (l) Krause, J. O.; Zarka, M. T.;
Anders, U.; Weberskirch, R.; Nuyken, O.; Buchmeiser, M. R. Angew.
Chem., Int. Ed. 2003, 42, 5965-5969. (m) Audic, N.; Clavier, H.; Mauduit,
M.; Guillemin, J.-C. J. Am. Chem. Soc. 2003, 125, 9248-9249. (n) Clavier,
H.; Audic, N.; Mauduit, M.; Guillemin, J.-C. G. Chem. Commun. 2004,
282-284.
In accordance with this assumption we observed that complex
718 (Scheme 1), bearing the electron-donating (EDG) diethyl-
(9) Kunz, U.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Wen, H.; Jas,
G.; Kirschning, A. Eur. J. Org. Chem. 2004, 3601-3610.
(10) Scho¨ning, K. U.; End, N.; Top. Curr. Chem. 2004, 242, 241-273 and 273-
319.
(11) For an excellent review on strategies of noncovalent immobilization of
catalysts refer to Horn, J.; Michalek, F.; Tzschucke, C. C.; Bannwarth, W.
Top. Curr. Chem. 2004, 242, 43-77.
(12) Fraile, J. M.; Garc´ıa, J. I.; Herrer´ıas, C. I.; Mayoral, J. A.; Reiser, O.;
Socue´llamos, A.; Werner, H. Chem. Eur. J. 2004, 10, 2997-3005.
(13) Mehnert, C. P. Chem. Eur. J. 2004, 14, 50-56.
(14) (a) Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun. 2002,
3010-3011. (b) Hagiwara, H. Sugawara, Y.; Isobe, K.; Hoshi, T.; Suzuki,
T. Org. Lett. 2004, 6, 2325-2328. (c) Gruttadauri, M.; Riela, S.; Meo, P.
L.; Da´nna, F.; Noto, R. Tetrahedron Lett. 2004, 45, 6113-6116.
(15) Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Synlett 2005, 2948-
2952.
(8) (a) Kirschning, A.; Jas, G. Top. Curr. Chem. 2004, 242, 209-241. (b) Jas,
G.; Kirschning, A. Chem. Eur. J. 2003, 9, 5708-5723. (c) Fletcher, P. D.
I.; Haswell, S. J.; Pombo-Villar, E.; Warrington, B. H.; Watts, P.; Wong,
S. Y.; Zhang, X. Tetrahedron 2002, 58, 4735-4757. (d) Kirschning, A.;
Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972-5990.
(16) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem., Int. Ed. 2002,
41, 4038-4040; Angew. Chem. 2002, 114, 4210-4212.
9
13262 J. AM. CHEM. SOC. VOL. 128, NO. 40, 2006