Journal of the American Chemical Society
Page 4 of 5
1
2
(5) Other methods: (a) Ouyang, Y.-J.; Li, Y.-Y.; Li, N.-B.; Xu, X.-H.
Chin. Chem. Lett. 2013, 24, 1103; (b) Panmand, D. S.; Tiwari, A. D.;
Panda, S. S.; Monbaliu, J.-C. M.; Beagle, L. K.; Asiri, A. M.; Stevens, C.
V.; Steel, P. J.; Hall, C. D.; Katritzky, A. R. Tetrahedron Lett. 2014, 55,
5898; (c) Kumaraswamy, G.; Raju, R. Adv. Synth. Catal. 2014, 356, 2591;
(d) Harveyh, R.; Jacobson, E.; Jensen, E. J. Am. Chem. Soc. 1963, 85,
1623.
3
4
5
6
7
(6) Dehydrogenative coupling is emerging as an important
methodology for chemical bond formation. The transformation obviates
the need for prefunctionalization of starting materials and is recognized to
be viable alternative to traditional coupling strategy with concomitant salt
elimination. For book and reviews, see: (a) Li, C.-J. From C-H to C-C
bonds: Cross-Dehydrogenative-Coupling; Royal Society of Chemistry,
2014; (b) Yeung, C. S., Dong, V. M. Chem. Rev. 2011, 111, 1215; (c)
Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 74;
(d) Waterman, R. Chem. Soc. Rev. 2013, 42, 5629; (e) Li, C.-J. Acc. Chem.
Res. 2009, 42, 335; (e) Itazaki, M.; Nakazawa, H. Top Organomet. Chem.
2015, 50, 47; (f) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436.
(7) Compared with the relatively well-established carbon-element bond
formation, the construction of phosphorus-element bonds by using
dehydrogenative coupling strategy though grows quickly seems immature,
few general and practically useful reactions have been established yet. For
review, see: Chen, T.; Zhang, J.-S.; Han, L.-B. Dalton. Trans. 2016, 45,
1843.
(8) For selected examples, see: (a) Baslé, O.; Li, C.-J. Chem. Commun.
2009, 4124. (b) Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am.
Chem. Soc. 2013, 135, 9322; (c) Li, C.; Yano, T.; Ishida, N.; Murakami,
M. Angew. Chem. Int. Ed. 2013, 52, 9801; (d) Gao, Y.; Wang, G.; Chen,
L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B. J. Am. Chem. Soc. 2009, 131,
7956; (e) Yang, J.; Chen, T.; Zhou, Y.; Yin, S.; Han, L.-B. Chem.
Commun. 2015, 51, 3549; (f) Yang, J.; Chen, T.; Zhou, Y.; Yin, S.-F.;
Han, L.-B. Organometallics 2015, 34, 5095; (g) Wang, T.; Chen, S.; Shao,
A.; Gao, M.; Huang, Y.; Lei, A. Org. Lett. 2015, 17, 118; (h) Fraser, J.;
Wilson, L. J.; Blundell, R.; Hayes, C. J. Chem. Commun. 2013, 49, 8919;
(i) Berger, O.; Montchamp, J.-L. Chem. Eur. J. 2014, 20, 12385; (j) Zhou,
Y.; Yin, S.; Gao, Y.; Zhao, Y.; Goto, M.; Han, L.-B. Angew. Chem. Int.
Ed. 2010, 49, 6852. All these reactions are oxidatively dehydrogenative
couplings.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) The generation of dihydrogen in the reaction could be detected by
GC, see SI.
(10) Under the standard reaction conditions, 70% yield of ethylbenzene
was generated (GC yield using tridecane as an internal standard).
(11) The configuration of the P-chiral phosphorothioates was
confirmed by comparison with samples generated from Atherton-Todd
reaction. For detailed information, see SI.
(12) Prof. Kumaraswamy tried to prepare P-chiral phosphorothioates
via copper-mediated sulfenylation of P-chiral hydrogen phosphoryl
compounds with sulfonylhydrazides, a racemic mixture was afforded, see
Ref. 5c.
(13) To the best of our knowledge, no synthesis of phosphoryl Pd(II)
complexes with such H2 evolution was reported.
(14) 5a could also be produced by reaction of 3c and equivalent
PhSPd(PEt3)2H with H2 evolution, which was generated from oxidative
addition of Pd(PEt3)4 to PhSH.
(15) The CDC reactions of trivalent phosphine R2PH and RPH2 are
known, see: (a) Fermin, M. C.; Stephan, D. W. J. Am. Chem. Soc. 1995,
117, 12645; (b) Xin, S.; Woo, H.-G.; Harrod, J. F.; Samuel, E.; Lebuis,
A.-M. J. Am. Chem. Soc. 1997, 119, 5307; (c) Stephan, D. W. Angew.
Chem. Int. Ed. 2000, 39, 314; (d) Bohm, V. P. W.; Brookhart, M. Angew.
Chem. Int. Ed. 2001, 40, 4694; (e) Shu, R.; Hao, L.; Harrod, J. F.; Woo,
H.-G.; Samuel, E. J. Am. Chem. Soc. 1998, 120, 12988; (f) McWilliams, A.
R.; Dorn, H.; Manners, I. Top. Curr. Chem. 2002, 120, 141; (g) Dorn, H.;
Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough A. J.;
Manners, I. J. Am. Chem. Soc. 2000, 122, 6669; (h) Roering, A. J.;
MacMillan, S. N.; Tanski, J. M.; Waterman, R. Inorg. Chem. 2007, 46,
6855; (i) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I.
Angew. Chem. Int. Ed. 1999, 38, 3321; (j) Han, L.-B.; Tilley, T. D. J. Am.
Chem. Soc. 2006, 128, 13698.
ACS Paragon Plus Environment