of Na+ it was significantly inhibited (CLp ) 0.28, 0.285 µL/
min/cm). In the case of â-SAPG-GGYR, CLp was signifi-
cantly decreased in the presence of phloridzin and D-glucose
and in the absence of Na+. These findings showed that
both R- and â-SAPG-GGYR were transported by the Na+-
dependent D-glucose transporter. However, the finding
that permeation of R-SAPG-GGYR was slightly inhibited
by phloridzin suggested the possibility that this R-anomer
was actively transported by the Na+-dependent D-glucose
transporter with low affinity for â-D-glucose. Ohnishi et
al. have reported that there are two kinds of transporter
which have high and low affinity for â-D-glucoside.32
To clarify the difference in absorption between R- and
â-SAPG-GGYR, we calculated the permeation clearance
transported by the Na+-dependent D-glucose transporter
(CLp)Na+ by subtracting the CLp value in the absence of
Na+ from that in the presence of Na+. The (CLp)Na+ was
2.8 µL/min/cm for â-SAPG-GGYR and was about 5 times
greater than that for R-SAPG-GGYR (0.5 µL/min/cm).
Since the â-form has higher affinity for SGLT-1 than the
R-form of glucose, as described above, a large amount of
â-SAPG-GGYR might be transported to the serosal side.
of insulin in the small intestine: Relative importance of
insulin association characteristics in aqueous solution. Pharm.
Res. 1994, 11, 1115-1120.
10. Tsuji, A.; Tamai, I. Carrier-mediated intestinal transport of
drugs. Pharm. Res. 1996, 13, 963-977.
11. Bell, G. I.; Burant, C. F.; Takeda, J .; Gould, G. W. Structure
and function of mammalian facilitative sugar transporters.
J . Biol. Chem. 1994, 268, 19161-19164.
12. Gould, G. W.; Holman, G. D. The glucose transporter
family: Structure, function and tissue-specific expression.
Biochem. J . 1993, 295, 329-341.
13. Hediger, M. A.; Coady, M. J .; Ikeda, T. S.; Wright, E. M.
Expression cloning and cDNA sequencing of the Na+/glucose
cotransporter. Nature Lond. 1987, 330, 379-381.
14. Haga, M.; Saito, K.; Shimaya, T.; Maezawa, Y.; Kato, Y.; Kim,
S. W. Hypoglycemic effect of intestinally administered
monosaccharide-modified insulin derivatives in rats. Chem.
Pharm. Bull. 1990, 38, 1983-1986.
15. J eong, S. Y.; Kim, S. W.; Eenink, M. J . D.; Feijen, J . Self-
regulating insulin delivery systems. I. Synthesis and char-
acterization of glycosylated insulin. J . Controlled Release
1984, 1, 57-66.
16. Ueki, M.; Inazu, T. Synthesis of peptide containing hy-
droxyamino acids by the mixed anhydride method without
protecting the hydroxyl functions. Chem. Lett. 1982, 45-48.
17. Gray, W. R. In Method in Enzymology, 25th ed.; Hiers, C.
H. W.; Timasheff, S.N. Eds.; Academic Press: New York,
1972; pp 128.
18. Hodge, J . E.; Hofreiter, B. T. In Methods in Carbohydrate
Chemistry, 1st ed.; Whister, R. L., Wolfrom, M. L., Eds.;
Academic Press: New York, 1962; pp 388.
19. Tiruppathi, C.; Miyamoto, Y.; Ganapathy, V.; Leibach, F. H.
Fatty acid-induced alterations in transport systems of the
small intestinal brush-border membranes. Biochem. Phar-
macol. 1988, 37, 1399-1405.
20. Takuwa, N.; Shimada, T.; Matsumoto, H.; Hoshi, T. Proton-
coupled transport of glycylglycine in rabbit renal brush-
border membrane vesicles. Biochim. Biophys. Acta 1985, 814,
186-190.
21. Hamlin, J . L.; Arquilla, E. R. Preparation, purification, and
characterization of a biologically active derivative substituted
predominantly on tyrosine A14. J . Biol. Chem. 1974, 10, 21-
32.
4. Conclusion
It was shown from the study using BBMVs and the
everted sac method that glycosylation at the R-amino
position of GGYR increased its resistance to aminopepti-
dase and inhibited its degradation and that the Na+-
dependent glucose transporter played an important role in
the intestinal absorption of both R- and â-SAPG-GGYR. It
was also indicated that the amount of â-SAPG-GGYR
transported was greater than that of R-SAPG-GGYR. The
finding that a tetrapeptide was transported by the Na+-
dependent glucose transporter may be useful in the im-
provement of intestinal absorption of peptide drugs which
show poor membrane penetrability.
22. McCarthy, C. F.; Borland. J r. J . L.; Lynch, H. L., J r.; Owen,
E. E.; Tyor, M. P. Defective uptake of basic amino acids and
L-cystine by intestinal mucosa of patients with cystinuria.
J . Clin. Invest. 1964, 43, 1518-1524.
23. Schilling, R. J .; Mitra, A. K. Intestinal mucosal transport of
References and Notes
insulin, Int. J . Pharm. 1990, 62, 53-64.
1. Friedman, D. I.; Amidon, G. L. Oral absorption: Influence
of pH and inhibitors on the intestinal hydrolysis of leu-
enkephalin and analogues. Pharm. Res. 1991, 8, 93-96.
2. Yamamoto, A.; Hayakawa, E.; Lee, V.H. L. Insulin and
proinsulin proteolysis in mucosal homogentes of the albino
rabbit: Implication in peptide delivery from nonoral routes.
Life Sci. 1990, 47, 2465-2474.
3. Morishita, M.; Morishita, I.; Takayama, K.; Machida, Y.;
Nagai, T. Site-dependent effect of aprotinin, sodium caprate,
Na2EDTA and sodium glycocholate on intestinal absorption
of insulin. Biol. Pharm. Bull. 1993, 16, 68-72.
4. Yamamoto, A.; Taniguchi, T.; Rikyuu, K.; Tsuji, T.; Fujita,
T.; Murakami, M.; Muranishi, S. Effects of various protease
inhibitors on the intestinal absorption and degradation of
insulin in rats. Pharm. Res. 1994, 11, 1496-1499.
5. Burcham, D. L.; Angust, B. A.; Hussain, M.; Gorko, M. A.;
Quon, C. Y.; Huang, S.M. The effect of absorption enhancers
on the oral absorption of the GP IIB/IIIA receptor antagonist,
DMP 728, in rats and dogs. Pharm. Res. 1995, 12, 2065-
2070.
6. Hoogstraate, A. J .; Coos Verhoef, J .; Pijpers, A.; van Leen-
goed, L. A.; Verheijden, J . H.; J unginger, H. E.; Bodde, H.
E. In vivo buccal delivery of the peptide drug buserelin with
glycodeoxycholate as an absorption enhancer in pigs. Pharm.
Res. 1996, 8, 1233-1237.
24. Taki, Y.; Sakane, T.; Nadai, T.; Sezaki, H.; Amidon, G. L.;
Languth, P.; Yamashita, S. Gastrointestinal absorption of
peptide drug: Quantitative evaluation of the permeation of
metkephamide in rat small intestine. J . Pharmacol. Exp.
Ther. 1995, 274, 373-377.
25. Bai, J . P. F.; Amidon, G. L. Structural specificity of mucosal-
cell transport and metabolism of peptide drugs: Implication
for oral peptide drug delivery. Pharm. Res. 1992, 9, 969-
978.
26. Langguth, P.; Bohner, V.; Biber, J .; Merkle, H. P. Metabolism
and transport of the pentapeptide metkephamid by brush-
border membrane vesicles of rat intestine. J . Pharm. Phar-
macol. 1994, 46, 34-40.
27. Thorens, B. Glucose transporters in the regulation of intes-
tinal, renal, and liver glucose fluxes. Am. J . Physiol. 1996,
270 (Gastrointest. Liver Physiol. 33), G541-553.
28. Crane, R. K. Na+-dependent transport in the intestine and
other animal tissues. Fed. Proc. 1965, 24, 1000-1005.
29. Wilson, T. H.; Landeu, B. R. Specificity of sugar transport
by the intestine of the hamster. Am. J . Physiol. 1960, 198,
99-102.
30. Landeu, B. R.; Bernstein, L.; Wilson, T. H. Hexose transport
by hamster intestine in vitro. Am. J . Physiol. 1962, 203, 237-
240.
7. Samanen, J .; Wilson, G.; Smith, P. L. Lee, C. P.; Bondinell,
W.; Ku, T.; Rhodes, G.; Nicols, A. Chemical approaches to
improve the oral bioavailability of peptidergic molecules. J .
Pharm. Pharmacol. 1996, 2, 119-135.
8. Ribadeneira, M. D.; Aungst, B. J .; Eyermann, C. J .; Huang,
S. M. Effects of structural modifications on the intestinal
permeability of angiotensin II receptor antagonists and the
correlation of in vitro, in situ, and in vivo absorption. Pharm.
Res. 1996, 2, 227-233.
9. Asada, H.; Douen, T.; Mizokoshi, Y.; Fujita, T.; Murakami,
M.; Yamamoto, A.; Muranishi, S. Stability of acyl derivatives
31. Mizuma, T.; Ohta, K.; Awazu, S. The â-anomeric and glucose
preferences of glucose transport carrier for intestinal active
absorption of monosaccharide conjugates. Biochim. Biophys.
Acta 1994, 1200, 117-122.
32. Ohnishi, T.; Mizuma, T.; Awazu, S. Elucidation of intestinal
transport mechanism of glycoside using intestinal brush-
border membrane vesicles: I. Elucidation of transport mech-
anism of glucoside. Xenobio. Metabol. Dispos. 1996, 11
(Suppl.) S194.
J S970269P
332 / Journal of Pharmaceutical Sciences
Vol. 87, No. 3, March 1998