seldom applied in practical synthesis, presumably because
of their narrow substrate scope. To achieve highly catalytic
activity and excellent enantioselectivity of organic reactions
in water, much effort has been devoted to understanding the
nature of the interrupting ionic interactions, hydrogen bonds,
and hydrophobic interactions in aqueous media.7 Very
recently, Takabe8 and Hayashi9 independently reported highly
diastereo- and enantioselective direct aldol reactions in water.
Nonetheless, development of new organocatalysts for the
direct asymmetric aldol reactions in water is still warranted
to achieve high reactivity and high diastereo- and enanti-
oselectivity, as well as catalyst recovery and reuse.
resulting in the corresponding anti aldol products in a nearly
optically pure form.
Prolyl N-sulfonamides (C2) have been used in some
catalytic asymmetric reactions.14 Structurally similar to
proline (C1) and N-(2-pyrrolidinylmethyl)sulfonamides (C3),15
these compounds (C2) are expected to have a broad range
of applications in asymmetric catalysis (Figure 1). We
Dendrimers are well-defined macromolecules with con-
trollable structures, which offer a unique tool for fine-tuning
catalytic activity through their microenviroment. Other
advantages of dendritic catalysts include the combination of
both homogeneous and heterogeneous catalysis10 and pos-
sibile catalyst recovery by using membrane, nanofiltration
techniques11 or selective precipitation.12 Recently, we have
reported the synthesis of some new polyether dendritic chiral
pyrrolidinylmethanol derivatives and their applications in
catalytic asymmetric reactions.13 Herein, we wish to report
that the recyclable chiral amphiphilic dendritic catalysts
derived from prolyl N-sulfonamides catalyze highly diaste-
reo- and enantioselective direct aldol reactions in water,
Figure 1. Structure of proline and its devative organocatalysts.
hypothesized that the prolyl N-sulfonamide compounds (C2)
with polyether dendritic wedges as hydrophobic groups
should assemble with hydrophobic reactants in water and
sequester the transition state from water and, therefore, high
asymmetric induction may be achieved in water.8,9 Thus, we
synthesized a series of chiral dendritic catalysts derived from
prolyl N-sulfonamides and investigated their catalytic activi-
ties in the asymmetric direct aldol reaction in water.
The synthetic procedures for dendritic catalysts 1d-f are
shown in Scheme 1. The reaction of Boc-L-proline with
(3) (a) Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie: London,
1998. (b) Lindstrom, U. M. Chem. ReV. 2002, 102, 2751. (c) Kobayashi,
S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209. (d) Li, C.-J. Chem. ReV.
2005, 105, 3095.
(4) Shibasaki, M.; Matsunaga, S.; Kumagai, N. In Modern Aldol
Reactions; Mahrwald, R., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, p
197.
Scheme 1
(5) Dickerson, T. J.; Janda, K. D. J. Am. Chem. Soc. 2002, 124, 3220.
(6) (a) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000,
39, 1352. (b) Wymer, N.; Toone, E. J. Curr. Opin. Chem. Biol. 2000, 4,
110. (c) Zhong, G.; Lerner, R. A.; Barbas, C. F., III. Angew. Chem., Int.
Ed. 1999, 38, 3738.
(7) Sinou, D. AdV. Synth. Catal. 2002, 344, 221.
(8) (a) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka,
F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 734. (b) Mase, N.; Watanabe
K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc.
2006, 128, 4966.
(9) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.;
Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958.
(10) For recent reviews on dendritic catalysts, see: (a) Oosterom, G.
E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew.
Chem., Int. Ed. 2001, 40, 1828. (b) Astruc, D.; Chardac, F. Chem. ReV.
2001, 101, 2991. (c) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yueng,
L. K. Acc. Chem. Res. 2001, 34, 181. (d) Twyman, L. J.; King, A. S. H.;
Martin, I. K. Chem. Soc. ReV. 2002, 31, 69. (e) van Heerbeek, R.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. ReV. 2002, 102,
3717. (f) Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Chem. ReV. 2002, 102,
3385. (g) Caminade, A.-M.; Maraval, V.; Laurent, R.; Majoral, J.-P. Curr.
Org. Chem. 2002, 6, 739. (h) Chen, Y.-C.; Wu, T.-F.; Jiang, L.; Deng,
J.-G.; Liu, H.; Zhu, J.; Jiang, Y.-Z. J. Org. Chem. 2005, 70, 1006.
(11) For an excellent review on the nanofiltration technique in dendritic
catalyst recycling, see: Dijkstra, H. P.; van Klink, G. P. M.; van Koten, G.
Acc. Chem. Res. 2002, 35, 798.
(12) For selected reports on dendritic catalyst recycling by precipitation,
see: (a) Reetz, M. T.; Lohmer, G.; Schwickardi, R. Angew. Chem., Int.
Ed. 1997, 36, 1526. (b) Petrucci-Samija, M.; Guillemette, V.; Dasgupta,
M.; Kakkar, A. K. J. Am. Chem. Soc. 1999, 121, 1968. (c) Hu, Q.-S.; Pugh,
V.; Sabat, M.; Pu, L. J. Org. Chem. 1999, 64, 7528. (d) Fan, Q.-H.; Chen,
Y.-M.; Chen, X.-M.; Jiang, D.-Z.; Xi, F.; Chan, A. S. C. Chem. Commun.
2000, 789. (e) Maraval, V.; Caminade, A.-M.; Majoral, J.-P. Organome-
tallics 2000, 19, 4025. (f) Helms, B.; Liang, C. O.; Haeker, C. J.; Fre´chet,
Jean M. J. Macromolecules 2005, 38, 5411.
4-nitrobenzsulfonamide provided 2, which was then reacted
with 3d-f, followed by deprotecting the Boc group to give
(14) (a) Berkessel, A.; Koch, B.; Lex, J. AdV. Synth. Catal. 2004, 346,
1141. (b) Sunde´n, H.; Dahlin, N.; Ibrahen, I.; Adolfsson, H.; Co´rdova, A.
Tetrahedron Lett. 2005, 46, 3385. (c) Bellis, E.; Vasilatou, K.; Kokotos,
G. Synthesis 2005, 14, 2407. (d) Sunde´n, H.; Ibrahen, I.; Eriksson, L.;
Co´rdova, A. Angew. Chem., Int. Ed. 2005, 44, 4877. (e) Cobb, A. J. A.;
Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol.
Chem. 2005, 3, 84.
(15) (a) Wang, W.; Li, H.; Wang, J. Tetrahedron Lett. 2004, 45, 8229,
1369. (b) Wang, W.; Wang, J.; Li, H. Tetrahedron Lett. 2004, 45, 7235.
(c) Wang, W.; Wang, J.; Li H. Tetrahedron Lett. 2004, 45, 7243. (d) Wang,
W.; Wang, J.; Li H. Org. Lett. 2004, 6, 2817. (e) Wang, W.; Wang, J.; Li
H. Angew. Chem., Int. Ed. 2005, 44. (f) Zu, L.; Wang, J.; Li, H.; Wang,
W. Org. Lett. 2006, 8, 3077-3080.
(13) (a) Liu, X.-Y.; Wu, X.-Y.; Chai, Z.; Wu, Y.-Y.; Zhao, G.; Zhu,
S.-Z. J. Org. Chem. 2005, 70, 7432. (b) Wang, G.-Y.; Liu, X.-Y.; Zhao, G.
Synlett 2006, 1150. (c) Liu, X.-Y.; Li, Y.-W.; Wang, G.-Y.; Chai, Z.; Wu,
Y.-Y.; Zhao, G. Tetrahedron: Asymmetry 2006, 17, 750.
4418
Org. Lett., Vol. 8, No. 20, 2006