4792 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 20
Letters
(9) Asadi, F.; Faraj, M.; Malakouti, S.; Kukreja, S. C. Effect of
Parathyroid Hormone Related Protein, and Dihydrotestosterone on
Proliferation and Ornithine Decarboxylase mRNA in Human Prostate
Cancer Cell Lines. Int. Urol. Nephrol. 2001, 33, 417-422.
(10) Massfelder, T.; Lang, H.; Schordan, E.; Lindner, V.; Rothhut, S.;
Welsch, S.; Simon-Assmann, P.; Barthelmebs, M.; Jacqmin, D.;
Helwig, J. J. Parathyroid Hormone-Related Protein Is an Essential
Growth Factor for Human Clear Cell Renal Carcinoma and a Target
for the Von Hippel-Lindau Tumor Suppressor Gene. Cancer Res.
2004, 64, 180-188.
(11) Goldman, M. E.; McKee, R. L.; Caulfield, M. P.; Reagan, J. E.; Levy,
J. J.; Gay, C. T.; DeHaven, P. A.; Rosenblatt, M.; Chorev, M. A
New Highly Potent Parathyroid Hormone Antagonist: [D-Trp12,-
Tyr34]bPTH-(7-34)NH2. Endocrinology 1988, 123, 2597-2599.
(12) Nagasaki, K.; Yamaguchi, K.; Miyake, Y.; Hayashi, C.; Honda, S.;
Urakami, K.; Miki, K.; Kimura, S.; Watanabe, T.; Abe, K. In Vitro
and in Vivo Antagonists against Parathyroid Hormone-Related
Protein. Biochem. Biophys. Res. Commun. 1989, 158, 1036-1042.
(13) Hoare, S. R.; Usdin, T. B. Tuberoinfundibular Peptide (7-39) [TIP-
(7-39)], a Novel, Selective, High-Affinity Antagonist for the
Parathyroid Hormone-1 Receptor with No Detectable Agonist Activ-
ity. J. Pharmacol. Exp. Ther. 2000, 295, 761-770.
(14) Hoare, S. R.; Usdin, T. B. Specificity and Stability of a New PTH1
Receptor Antagonist, Mouse TIP(7-39). Peptides 2002, 23, 989-
998.
(15) Carter, P. H.; Liu, R. Q.; Foster, W. R.; Tamasi, J. A.; Tebben, A.
J.; Favata, M.; Staal, A.; Cvijic, M. E.; French, M. H.; Dell, V.;
Apanovitch, D.; Lei, M.; Zhao, Q.; Cunningham, M.; Decicco, C.
P.; Trzaskos, J. M.; Feyen, J. H. Discovery of a Small Molecule
Antagonist of the Parathyroid Hormone Receptor by Using an
N-Terminal Parathyroid Hormone Peptide Probe. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 6846-6851.
(16) Rickard, D. J.; Wang, F. L.; Rodriguez-Rojas, A. M.; Wu, Z.; Trice,
W. J.; Hoffman, S. J.; Votta, B.; Stroup, G. B.; Kumar, S.; Nuttall,
M. E. Intermittent Treatment with Parathyroid Hormone (PTH) as
Well as a Non-Peptide Small Molecule Agonist of the PTH1 Receptor
Inhibits Adipocyte Differentiation in Human Bone Marrow Stromal
Cells. Bone 2006, 39, 1361-1372.
(17) Williams, T. M.; Stump, C. A.; Nguyen, D. N.; Quigley, A. G.; Bell,
I. M.; Gallicchio, S. N.; Zartman, C. B.; Wan, B. L.; Penna, K. D.;
Kunapuli, P.; Kane, S. A.; Koblan, K. S.; Mosser, S. D.; Rutledge,
R. Z.; Salvatore, C.; Fay, J. F.; Vacca, J. P.; Graham, S. L. Non-
Peptide Calcitonin Gene-Related Peptide Receptor Antagonists from
a Benzodiazepinone Lead. Bioorg. Med. Chem. Lett. 2006, 16, 2595-
2598.
(18) McLatchie, L. M.; Fraser, N. J.; Main, M. J.; Wise, A.; Brown, J.;
Thompson, N.; Solari, R.; Lee, M. G.; Foord, S. M. RAMPs Regulate
the Transport and Ligand Specificity of the Calcitonin-Receptor-Like
Receptor. Nature 1998, 393, 333-339.
(19) Sexton, P. M.; Morfis, M.; Tilakaratne, N.; Hay, D. L.; Udawela,
M.; Christopoulos, G.; Christopoulos, A. Complexing Receptor
Pharmacology: Modulation of Family B G Protein-Coupled Receptor
Function by RAMPs. Ann. N. Y. Acad. Sci. 2006, 1070, 90-104.
(20) Foord, S. M.; Marshall, F. H. Ramps: Accessory Proteins for Seven
Transmembrane Domain Receptors. Trends Pharmacol. Sci. 1999,
20, 184-187.
(a heterodimeric receptor comprising the calcitonin receptor-
like receptor (CRLR) and receptor activating modifying protein
(RAMP) 1). Although RAMPs have not so far been strongly
associated with PTH1Rs, it is becoming increasingly clear that
they are often coexpressed with type B GPCRs18,19 and can have
a considerable influence on receptor pharmacology,20 including
ligand binding.21 Thus, the activity of compound 19 in the
PTH1R cell-based assays may be due to differences in the
sequences of the respective PTH1Rs and/or associated RAMPs.
While the wider receptor selectivity and ADME character-
istics are beyond the scope of this Letter, we have shown that
1,3,4-benzotriazepines are potent PTH1R antagonists. The SAR
that has been established so far has guided our subsequent effort
in pursuit of compounds having the appropriate balance of
interspecies PTH1R affinity and ADME properties to establish
proof of concept for a non-peptide PTH1R antagonist as a novel
treatment for bone metastases, hypercalcaemia, cachexia, and
hyperparathyroidism.
Supporting Information Available: Biological testing methods,
1H NMR data, experimental procedures for the preparation of
compounds, and elemental analysis results of compounds 1-30.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Liao, J.; McCauley, L. K. Skeletal Metastasis: Established and
Emerging Roles of Parathyroid Hormone Related Protein (PTHrP).
Cancer Metastasis ReV. 2006, 25, 559-571.
(2) Guise, T. A.; Yin, J. J.; Taylor, S. D.; Kumagai, Y.; Dallas, M.;
Boyce, B. F.; Yoneda, T.; Mundy, G. R. Evidence for a Causal Role
of Parathyroid Hormone-Related Protein in the Pathogenesis of
Human Breast Cancer-Mediated Osteolysis. J. Clin. InVest. 1996,
98, 1544-1549.
(3) Sato, K.; Onuma, E.; Yocum, R. C.; Ogata, E. Treatment of
Malignancy-Associated Hypercalcemia and Cachexia with Human-
ized Anti-Parathyroid Hormone-Related Protein Antibody. Semin.
Oncol. 2003, 30, 167-173.
(4) Deftos, L. J.; Barken, I.; Burton, D. W.; Hoffman, R. M.; Geller, J.
Direct Evidence That PTHrP Expression Promotes Prostate Cancer
Progression in Bone. Biochem. Biophys. Res. Commun. 2005, 327,
468-472.
(5) Fisher, J. L.; Thomas-Mudge, R. J.; Elliott, J.; Hards, D. K.; Sims,
N. A.; Slavin, J.; Martin, T. J.; Gillespie, M. T. Osteoprotegerin
Overexpression by Breast Cancer Cells Enhances Orthotopic and
Osseous Tumor Growth and Contrasts with That Delivered Thera-
peutically. Cancer Res. 2006, 66, 3620-3628.
(6) Saito, H.; Tsunenari, T.; Onuma, E.; Sato, K.; Ogata, E.; Yamada-
Okabe, H. Humanized Monoclonal Antibody against Parathyroid
Hormone-Related Protein Suppresses Osteolytic Bone Metastasis of
Human Breast Cancer Cells Derived from MDA-MB-231. Anticancer
Res. 2005, 25, 3817-3823.
(7) Iguchi, H.; Aramaki, Y.; Maruta, S.; Takiguchi, S. Effects of Anti-
Parathyroid Hormone-Related Protein Monoclonal Antibody and
Osteoprotegerin on PTHrP-Producing Tumor-Induced Cachexia in
Nude Mice. J. Bone Miner. Metab. 2006, 24, 16-19.
(8) Tovar Sepulveda, V. A.; Falzon, M. Parathyroid Hormone-Related
Protein Enhances PC-3 Prostate Cancer Cell Growth via Both
Autocrine/Paracrine and Intracrine Pathways. Regul. Pept. 2002, 105,
109-120.
(21) Hilairet, S.; Foord, S. M.; Marshall, F. H.; Bouvier, M. Protein-
Protein Interaction and Not Glycosylation Determines the Binding
Selectivity of Heterodimers between the Calcitonin Receptor-Like
Receptor and the Receptor Activity-Modifying Proteins. J. Biol.
Chem. 2001, 276, 29575-29581.
JM0707626