SCHEME 4
employed for the oxidative aminocarbonylation of 4-yn-1-ols
and propargyl alcohols, i.e., in DME as the solvent at 80 °C
under 20 atm (at 25 °C) of a 4:1 mixture of CO-air in the
presence of catalytic amounts of PdI2 in conjunction with KI
and using diethylamine 2a as the amine (PdI2/KI/1a/2a molar
ratio ) 1:10:200:400, 1a concentration ) 0.5 mmol per mL of
DME). After 3 h, we observed the formation of a Z/E mixture
of 2-benzo[1,4]dioxin-2-ylidene-N,N-diethylacetamide 3aa in
43% total yield (Z/E ) 72:28) at 63% conversion of 1a (eq 2)
(Table 1, entry 1, see the Supporting Information).
dihydro-2H-benzo[1,4]oxazine derivatives by direct carbonyl-
ation of acyclic substrates.6-8 The development of new,
selective, and atom-economical synthetic methodologies for the
direct preparation of functionalized 2,3-dihydrobenzo[1,4]-
dioxines and 3,4-dihydro-2H-benzo[1,4]oxazines starting from
simple building blocks through an ordered sequence of steps is
of particular interest, also in view of the wide range of biological
activities shown by many derivatives of these classes of
heterocycles.9,10
The oxidative carbonylation of 2-prop-2-ynyloxyphenol 1a
was initially carried out under conditions similar to those
The stereochemistry around the double bond of the major
stereoisomer was established to be Z by single-crystal X-ray
diffraction analysis (see the Supporting Information for details).
The Z/E ratio reflected the relative stability of the diastereomers
under the reaction conditions, as shown by blank experiments.11
In an attempt at improving this initial result, we carried out
several experiments under different conditions (Table 1, entries
2-9). The use of an equimolar amount of 2a with respect to
1a led to a lower conversion of 1a and to a lower yield of the
final product (30%, entry 2). On the other hand, working with
(5) Formation of the 2-ynamide intermediates shown in Scheme 4 is
strongly suggested on the basis of what we have already demonstrated in
the case of aminocarbonylation of 2-yn-1-ols leading to 4-dialkylamino-
5H-furan-2-ones (Scheme 2)2 and of 4-yn-1-ols leading to 2-[(dialkylcar-
bamoyl)methylene]tetrahydrofurans (Scheme 3).4 In those cases, we were
able to isolate the corresponding 2-ynamide intermediates, which were
shown to convert into the final products under the reaction conditions in
the absence of the metal catalyst (this also proves that the conjugate addition
step is not catalyzed by palladium).2,4 In the present case, unfortunately,
all the attempts to isolate the 2-ynamide intermediates shown in Scheme 4
were unsuccessful. It is, however, interesting to note that the intramolecular
conjugate addition in very similar intermediates, such as 4-(2-hydroxy-
phenoxy)but-2-ynoic acid methyl ester, 4-(2-hydroxyphenoxy)but-2-ynoic
acid methyl ester, 4-(2-hydroxyphenylsulfanyl)but-2-ynoic acid methyl ester,
and 4-(2-mercaptophenoxy)but-2-ynoic acid methyl ester (formed in situ
by the reaction between 1,2-benzenediol, 2-methylaminophenol, or 2-mer-
captophenol with 4-chlorobut-2-ynoic acid methyl ester), has been described
in the literature.6a Moreover, the fact that 2-prop-2-ynyloxyphenols or
2-prop-2-ynyloxyanilines bearing an internal triple bond were unreactive
under our reaction conditions is another indirect proof of the validity of
the mechanism shown in Scheme 4, which clearly can be at work only
starting from substrates bearing a terminal triple bond.
(6) The synthesis of (4H-benzo[1,4]oxazin-3-ylidene)acetic esters and
benzo[1,4]dioxin-2-ylideneacetic acid esters by indirect carbonylation of
2-aminophenols or benzene-1,2-diol with 4-chlorobut-2-ynoic acid methyl
ester has been reported: (a) Cabiddu, S.; Floris, C.; Melis, S.; Sotgiu, F.;
Cerioni, G. J. Heterocycl. Chem. 1986, 23, 1815-1820. The indirect
carbonylation of 2-aminophenol with 4-chloro-3-oxobutyric acid ethyl ester
to give (4H-benzo[1,4]oxazin-3-ylidene)acetic acid ethyl ester has also been
reported: (b) Puebla, P.; Honores, Z.; Medarde, M.; Caballero, E.; Feliciano,
A. S.; Moran, L. J. Heterocycl. Chem. 1999, 36, 1097-1100. For other
syntheses of (4H-benzo[1,4]oxazin-3-ylidene)acetic esters, not involving
cyclization reactions, see: (c) Sabitha, G.; Reddy, M. M.; Srinivas, D.;
Yadov, J. S. Tetrahedron Lett. 1999, 40, 165-166. (d) Pippich, S.; Bartsch,
H.; Holzer, W. Tetrahedron 1997, 53, 8439-8446.
(7) For representative recent examples of synthesis of 2,3-dihydrobenzo-
[1,4]dioxines by cyclization of acyclic substrates, see: (a) Krois, S.; Steglich,
W. Tetrahedron 2004, 60, 4921-4930. (b) Labrosse, J.-R.; Lhoste, P.;
Delbecq, F.; Sinou, D. Eur. J. Org. Chem. 2003, 2813-2822. (c) Labrosse,
J.-R.; Lhoste, P.; Sinou, D. Eur. J. Org. Chem. 2002, 1966-1971. (d)
Kuwabe, S.-I.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem. Soc. 2001,
123, 12202-12206. (e) Wells, G. J.; Tao, M.; Josef, K. A.; Bihovsky, R.
J. Med. Chem. 2001, 44, 3488-3503. (f) Kitaori, K.; Furukawa, Y.;
Yoshimoto, H.; Otera, J. AdV. Synth. Catal. 2001, 343, 95-101. (g) Fukuda,
Y.; Seto, S.; Furuta, H.; Ebisu, H.; Oomori, Y.; Terashima, S. J. Med. Chem.
2001, 44, 1396-1406. (h) Valoti, E.; Pallavicini, M.; Villa, L.; Pezzetta,
D. J. Org. Chem. 2001, 66, 1018-1025. (i) Labrosse, J.-R.; Lhoste, P.;
Sinou, D. J. Org. Chem. 2001, 66, 6634-6642. (j) Fang, Q. K.; Grover,
P.; Han, Z.; McConville, F. X.; Rossi, R. F.; Olsson, D. J.; Kessler, D. W.;
Wald, S. A.; Senanayake, C. H. Tetrahedron: Asymmetry. 2001, 12, 2169-
2174.
(8) For representative recent examples of the synthesis of 3,4-dihydro-
2H-benzo[1,4]oxazines by cyclization of acyclic substrates, see: (a) Omar-
Amrani, R.; Schneider, R.; Fort, Y. Synthesis 2004, 2527-2534. (b) Yang,
S.-C.; Lai, H.-C.; Tsai, Y.-C. Tetrahedron Lett. 2004, 45, 2693-2698. (c)
Banik, B. K.; Banik, I.; Samajdar, S.; Wilson, M. Heterocycles 2004, 63;
283-296. (d) Bunce, R. A.; Herron, D. M.; Hale, L. Y. J. Heterocycl. Chem.
2003, 40, 1031-1040. (e) Touzeau, F.; Arrault, A.; Guillaumet, G.; Scalbert,
E.; Pfeiffer, B.; Rettori, M.-C.; Renard, P.; Merour, J.-Y. J. Med. Chem.
2003, 46, 1962-1979. (f) Largeron, M.; Neudorffer, A.; Vuilhorgne, M.;
Blattes, E.; Fleury, M.-B. Angew. Chem., Int. Ed. 2002, 41, 824-827. (g)
Romeo, G.; Materia, L.; Manetti, F.; Cagnotto, A.; Mennini, T.; Nicoletti,
F.; Botta, M.; Russo, F.; Minneman, K. P. J. Med. Chem. 2003, 46, 2877-
2894. (h) Stefanic, P.; Turnsek, K.; Kikelj, D. Tetrahedron 2003, 59, 7123-
7130.
(9) For some very recent examples of pharmacologically active 2,3-
dihydrobenzo[1,4]dioxine derivatives, see: (a) Clark, R. D.; Jahangir, A.;
Alam, M.; Rocha, C.; Lin, L.; Bjorner, B.; Nguyen, K.; Grady, C.; Williams,
T. J.; Stepan, G.; Tang, H. M.; Ford, A. P. D. W. Bioorg. Med. Chem. Lett.
2005, 15, 1697-1700. (b) Whitehead, J. W. F.; Lee, G. P.; Gharagozloo,
P.; Hofer, P.; Gehrig, A.; Wintergerst, P.; Smyth, D.; McCoull, W.;
Hachicha, M.; Patel, A.; Kyle, D. J. J. Med. Chem. 2005, 48, 1237-1243.
(c) Evrard, D. A.; Zhou, P.; Yi, S. Y.; Zhou, D.; Smith, D. L.; Sullivan, K.
M.; Hornby, G. A.; Schechter, L. E.; Andree, T. H.; Mewshaw, R. E. Bioorg.
Med. Chem. Lett. 2005, 15, 911-914. (d) Berger, Y.; Dehmlow, H.; Blum-
Kaelin, D.; Kitas, E. A.; Loeffler, B.-M.; Aebi, J. D.; Juillerat-Jeanneret,
L. J. Med. Chem. 2005, 48, 483-498. (e) Wang, G. T.; Wang, S.; Gentles,
R.; Sowin, T.; Leitza, S.; Reilly, E. B.; Von Geldern, T. W. Bioorg. Med.
Chem. Lett. 2005, 15, 195-201. (f) Mader, M. M.; Shih, C.; Considine,
E.; De Dios, A.; Grossman, C. S.; Hipskind, P. A.; Lin, H.-S.; Lobb, K. L.;
Lopez, B.; Lopez, J. E.; Martin Cabrejas, L. M.; Richett, M. E.; White, W.
T.; Cheung, Y.-Y.; Huang, Z.; Reilly, J. E.; Dinn, S. R. Bioorg. Med. Chem.
Lett. 2005, 15, 617-620. (g) Tumey, L. N.; Bom, D.; Huck, B.; Gleason,
E.; Wang, J.; Silver, D.; Brunden, K.; Boozer, S.; Rundlett, S.; Sherf, B.;
Murphy, S.; Dent, T.; Leventhal, C.; Bailey, A.; Harrington, J.; Bennani,
Y. L. Bioorg. Med. Chem. Lett. 2005, 15, 277-282. (h) Doherty, E. M.;
Fotsch, C.; Bo, Y.; Chakrabarti, P. P.; Chen, N.; Gavva, N.; Han, N.; Kelly,
M. G.; Kincaid, J.; Klionsky, L.; Liu, Q.; Ognyanov, V. I.; Tamir, R.; Wang,
X.; Zhu, J.; Norman, M. H.; Treanor, J. J. S. J. Med. Chem. 2005, 48,
71-90.
7896 J. Org. Chem., Vol. 71, No. 20, 2006