540
ANDRUSHKO ET AL.
Scheme 11. Synthesis of rosuvastatin ethyl ester [(a) MeCN, reflux, 14 h, (70%); (b) HF (aq.), MeCN; (c) Et2BOMe, NaBH4, THF/MeOH, –788C,
(85%, over two steps).]
7. Zhou Z, Rahme E, Pilote L, Are statins created equal? Evidence from
randomized trials of pravastatin, simvastatin, and atorvastatin for cardi-
ovascular disease prevention, Am Heart J 2006;151:273–281.
Mixed anhydrides (R)-25a,b [R 5 Me (a) or R 5 Et
(b)], prepared by treatment of (R)-24 with 1.5 equiv. of
corresponding methyl or ethyl chloroformate in toluene in
8. van der Harst P, Voors AA, van Gilst WH, Bo¨hm M, van Veldhuisen
the presence of Et3N, were submitted for the synthesis of
DJ. Statins in the treatment of chronic heart failure: a systematic
ylide (R)-19 without additional purification. Treatment of
(R)-25a or (R)-25b with methyltriphenylphosphonium
bromide and nBuLi furnished the targeted Wittig reagent
(R)-19 in 45% yield.
Wittig coupling of aldehyde 26 and ylide (R)-19 was
performed under reflux in CH3CN over 14 h and gave the
rosuvastatin precursor 27 in a yield of 70% (Scheme 11).41
Removal of the tBuPh2Si protective group by treatment
with aqueous HF in CH3CN and final exclusive diastereo-
selective reduction of the keto group with Et2B(OMe) and
NaBH4 in THF/MeOH at –788C, afforded rosuvastatin
ethyl ester in 85% yield.
We have presented here two new approaches for the
total syntheses of atorvastatin and rosuvastatin, based on
highly stereoselective hydrogenations of intermediate
b-keto esters. Optimized syntheses of substrates and sub-
sequent multistep transformations of the chiral hydrogena-
tion products in the desired drug constituents show clearly
the great value of stereoselective homogeneous catalysis
for the establishment of new and patent-free routes to
drugs.
review. PLoS Med 2006;3:e333–e333; literature cited therein.
9. Kaye JA, Meier CR, Walker AM, Jick H. Statin use, hyperlipidaemia,
and the risk of breast cancer. Brit J Cancer 2002;86:1436–1439.
10. Ray SK, Rege NN. Atorvastatin: in the management of hyperlipidae-
mia. Drug Rev 2000;46:242–243.
11. Wierzbicki AS, Mikhailidis DP, Wray R, Schachter M, Cramb R, Simp-
son WG, Byrne CB. Statin-fibrate combination therapy for hyperlipi-
daemia: a review. Curr Med Res Opin 2003;19:155–168.
12. Rodenburg J, Vissers MN, Wiegman A, van Trotsenburg ASP, van der
Graaf A, de Groot E, Wijburg FA, Kastelein JJP, Hutten BA. Statin
treatment in children with familial hypercholesterolemia. Circulation
2007;116:664–668.
13. Li JJ, Johnson DS, Sliskovic DR, Roth BD, Atorvastatin calcium
(Lipitor1). In: Contemporary drug synthesis. New York: Wiley-Inter-
science; 2004. p 113–124.
14. Maggon K, Best-selling human medicines 2002–2004. Drug Discov
Today 2005;10:739–742.
15. Croom KF, Plosker GL. Atorvastatin: a review of its use in the primary
prevention of cardiovascular events in patients with type 2 diabetes
mellitus. Drugs 2005;65:137–152.
16. Law MR, Rudnicka AR, Statin safety a systematic review. Am J Cardiol
2006;97 (suppl 8A):52C–60C.
17. Brower PL, Butler DE, Deering CF, Le TV, Millar A, Nanninga TN,
Roth BD. The synthesis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-
2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate for the prepara-
tion of CI-981, a highly potent, tissue selective inhibitor of HMG-CoA
reductase. Tetrahedron Lett 1992;33:2279–2282.
LITERATURE CITED
1. Gaw A, Packard CJ, Shepherd J. Statins: the HMG CoA reductase
inhibitors in perspective. London: Taylor & Francis; 2004. 262 p.
18. Baumann KL, Butler DE, Deering CF, Mennen KE, Millar A, Nan-
ninga TN, Palmer CW, Roth BD. The convergent synthesis of CI-981,
an optically active, highly potent, tissue selective inhibitor of HMG-
CoA reductase. Tetrahedron Lett 1992;33:2283–2284.
2. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low
density lipoprotein cholesterol, ischaemic heart disease, and stroke:
systematic review and meta-analysis. BMJ 2003;326:1423–1429.
3. Shepherd J, Hunninghake DB, Barter P, McKenney JM, Hutchinson
HG. Guidelines for lowering lipids to reduce coronary artery disease
risk: a comparison of rosuvastatin with atorvastatin, pravastatin, and
simvastatin for achieving lipid-lowering goals. Am J Cardiol 2003;91
(5A Suppl S):11C–17C.
19. Ra´dl S, Stach J, Hajicek J. An improved synthesis of 1,1-dimethylethyl
6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate
for atorvastatin synthesis. Tetrahedron Lett 2002;43:2087–2090.
20. George S, Sudalai A. An efficient organocatalytic route to the atorvas-
tatin side-chain. Tetrahedron Lett 2007;48:8544–8546.
4. Endo A. The discovery and development of HMG-CoA reductase
inhibitors. J Lipid Res 1992;33:1569–1582.
21. Pandey PS, Rao TS. An efficient synthesis of N3,4-diphenyl-5-(4-
fluorophenyl)-2-isopropyl-1H-3-pyrrolecarboxamide, a key intermedi-
ate for atorvastatin synthesis. Bioorg Med Chem Lett 2004;14:
129–131.
5. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr,
Ridker PM. Pharmacogenetic study of statin therapy and cholesterol
reduction. JAMA 2004;291:2821–2827.
22. Culhane NS, Lettieri SL, Skae JR. Rosuvastatin for the treatment of
hypercholesterolemia. Pharmacotherapy 2005;25:990–1000; literature
cited therein.
6. Cummings SR, Bauer DC. Do statins prevent both cardiovascular dis-
ease and fracture? JAMA 2000;283:3255–3257.
Chirality DOI 10.1002/chir