2046
T. Wedel, J. Podlech
LETTER
(3) (a) Aggarwal, V. K.; Drabowicz, J.; Graininger, R. S.;
(%) = 226 (8) [M+], 198 (17), 150 (17), 134 (100) [M+ – C7H8], 118
(31), 114 (20), 102 (34), 96 (23), 88 (62), 77 (40). HRMS (EI): m/z
calcd for C10H10O232S2: 226.0122; found: 226.0119. Anal. Calcd for
C10H10O2S2 (226.32): C, 53.07; H, 4.45. Found: C, 52.87; H, 4.69.
Gültekin, Z.; Lightowler, M.; Spargo, P. L. J. Org. Chem.
1995, 60, 4962. (b) Aggarwal, V. K.; Gültekin, Z.; Grainger,
R. S.; Adams, H.; Spargo, P. L. J. Chem. Soc., Perkin Trans.
1 1998, 2771. (c) Aggarwal, V. K.; Barrell, J. K.; Worral, J.
M.; Alexander, R. J. Org. Chem. 1998, 63, 7128.
(d) Aggarwal, V. K.; Roseblade, S. J.; Barrell, J. K.;
Alexander, R. Org. Lett. 2002, 4, 1227. (e) Aggarwal, V.
K.; Roseblade, S.; Alexander, R. Org. Biomol. Chem. 2003,
1, 684.
General Procedure for the Addition of Acetophenone Enolate to
Alkylidenedithiolane Dioxides
To a solution of acetophenone (1.4 equiv) in THF (10 mL/mmol)
was added at –78 °C NaHMDS (1.2 equiv, 2 M in hexane). The so-
lution was transferred via a cannula after 45 min at –78 °C to a pre-
cooled (–78 °C) solution of the bissulfoxide (1.0 equiv in THF, 15
mL/mmol). After 10 min, an excess MeOH (ca .0.5 mL) was added,
the solution was poured into sat. NH4Cl solution (20 mL/mmol), ex-
tracted with EtOAc (2 × 20 mL), CH2Cl2 (2 × 20 mL), and dried
(Na2SO4, K2CO3). The solvents were removed and the selectivity
was determined by 1H NMR or 13C NMR of the crude product (in-
tegration of the acetal proton). The residue was purified by chroma-
tography on SiO2.
(4) Wipf, P.; Graham, T. H. Org. Biomol. Chem. 2005, 3, 31.
(5) (a) Brebion, F.; Delouvrié, B.; Nájera, F.; Fensterbank, L.;
Malacria, M.; Vaissermann, J. Angew. Chem. Int. Ed. 2003,
52, 5342; Angew. Chem. 2003, 115, 5500. (b) Brebion, F.;
Goddard, J. P.; Fensterbank, L.; Malacria, M. Synthesis
2005, 2449. (c) Brebion, F.; Goddard, J.-P.; Gomez, C.;
Fensterbank, L.; Malacria, M. Synlett 2006, 713. (d) See
also: Midura, W. H.; Krysiak, J. A.; Cypryk, M.;
Mikołajczyk, M.; Wieczorek, M. W.; Filipczak, A. D. Eur.
J. Org. Chem. 2005, 653.
(6) Wedel, T.; Podlech, J. Org. Lett. 2005, 7, 4013.
(7) (a) Aggarwal, V. K.; Grainger, R. S.; Adams, H.; Spargo, P.
L. J. Org. Chem. 1998, 63, 3481. (b) Aggarwal, V. K.;
Grainger, R. S.; Newton, G. K.; Spargo, P. L.; Hobson, A.
D.; Adams, H. Org. Biomol. Chem. 2003, 1, 1884.
(8) Chou, W.-C.; Yang, S.-A.; Fang, J.-M. J. Chem. Soc., Perkin
Trans. 1 1994, 603.
(3R,1¢R,3¢R)-3-{1,3-Dioxo[1,3]dithiolan-2-yl}-1,3-diphenyl-pro-
pan-1-one (5b)
Selectivity ≥ 98:2; colorless crystals; mp 184 °C (CH2Cl2–acetone);
Rf = 0.19 (CH2Cl2–acetone, 2:1); [a]D +88.3 (c 0.8, CHCl3).
20
IR (DRIFT): 2978 (m), 1680 (s, C=O), 1596 (m), 1452 (m), 1412
(m), 1377 (w), 1301 (w), 1229 (m), 1027 (s, S=O) cm–1. 1H NMR
(400 MHz, CDCl3): d = 3.53–3.56 (m, 1 H), 3.66–3.74 (m, 3 H),
3.79–3.90 (m, 2 H), 3.98–4.04 (m, 1 H, H-3), 4.44 (dd, 1 H, J = 11.8,
1.1 Hz, H-2¢), 7.25–7.45, 7.51–7.55, 7.85–7.87 (3 m, 10 H, 2 Ph).
13C NMR (100 MHz, CDCl3): d = 37.8 (d), 43.6 (t), 50.7 (t), 52.1
(t), 97.4 (d), 128.1 (d), 128.2 (d), 128.4 (d), 128.6 (d), 129.1 (d),
133.4 (d), 136.4 (s), 139.5 (s), 196.6 (s). MS (EI, 70 eV, 190 °C):
m/z (%) = 346 (11) [M+], 221 (22), 210 (31), 107 (14), 105 (100)
[C7H5O+], 77 (28). HRMS (EI): m/z calcd for C18H18O332S2:
346.0697; found: 346.0695. Anal. Calcd for C18H18O3S2 (226.32):
C, 62.40; H, 5.24. Found: C, 62.13; H, 5.47.
(9) Okuyama, T.; Fujiwara, W.; Fueno, T. Bull. Chem. Soc. Jpn.
1986, 59, 453.
(10) (a) Aggarwal, V. K.; Steele, R. M.; Ritmaleni; Barrell, J. K.;
Grayson, I. J. Org. Chem. 2003, 68, 4087. (b) Further
methods for the oxidation of sulfides are summarized in:
Bäckvall, J.-E. In Modern Oxidation Methods; Bäckvall, J.-
E., Ed.; Wiley-VCH: Weinheim, 2004, 193. (c) Legros, J.;
Dehli, J. R.; Bolm, C. Adv. Synth. Catal. 2005, 347, 19.
(d) Kowalski, P.; Mitka, K.; Ossowska, K.; Kolarska, Z.
Tetrahedron 2005, 61, 1933.
(11) (a) Buist, P. H.; Marecak, D.; Holland, H. L.; Brown, F. M.
Tetrahedron: Asymmetry 1995, 6, 7. (b) Buist, P. H.;
Behrouzian, B. Magn. Res. Chem. 1996, 34, 1013.
(12) The formation of methanol adducts and of the prop-1-enyl
derivative was avoided when CH2Cl2–acetone (2:1) was
used as eluent in the chromatography.
Acknowledgment
We are deeply indebted to Dr. Wolfgang U. Frey (University of
Stuttgart) for the X-ray crystal structure analyses. We thank Prof.
Dr. W. Klopper (University of Karlsruhe) and Prof. Dr. E. Juaristi
(Mexico) for inspiring discussions.
(13) CCDC 603241 (co-crystal of 3c and 7c) and CCDC 603242
(5c) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
References and Notes
(1) (a) A comprehensive review on bissulfoxides has been
published: Delouvrié, B.; Fensterbank, L.; Nájera, F.;
Malacria, M. Eur. J. Org. Chem. 2002, 3507. (b) See also:
Fernández, I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
(2) (a) Posner, G. H. In Asymmetric Synthesis. Stereo-
differentiating Addition Reactions, Part A, Vol. 2; Morrison,
J. D., Ed.; Academic Press: New York, 1983, 225.
(b) Kahn, S. D.; Hehre, W. J. J. Am. Chem. Soc. 1986, 108,
7399. (c) Posner, G. H.; Weitzberg, M.; Hamill, T. G.;
Asirvatham, E.; Cun-Heng, H.; Clardy, J. Tetrahedron 1986,
42, 2919.
(14) (a) Roux, M. V.; Temprado, M.; Jiménez, P.; Dávalos, J. Z.;
Notario, R.; Martín-Valcárcel, G.; Garrido, L.; Guzmán-
Mejía, R.; Juaristi, E. J. Org. Chem. 2004, 69, 5454.
(b) Juaristi, E.; Notario, R.; Roux, M. V. Chem. Soc. Rev.
2005, 34, 347.
(15) Klopper, W.; Bihlmeier, A.; Kordel, E. personal
communication.
(16) Perkin, W. H. Ber. Dtsch. Chem. Ges. 1884, 17, 54.
Synlett 2006, No. 13, 2043–2046 © Thieme Stuttgart · New York