C O M M U N I C A T I O N S
Table 2. Scope of the Catalytic Asymmetric Reductive Amination
of Aldehydes
work. Generous support by the Max-Planck-Society and by Novartis
(Young Investigator Award to B.L.) is gratefully acknowledged.
We also thank Degussa, Lanxess, Merck, and BASF for general
support and donating chemicals.
Supporting Information Available: Experimental procedures,
compound characterization, NMR spectra, and HPLC traces (PDF). This
entry
R1
R2
R3
yield (%)
era
1
2b
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17c
Ph (3a)
Ph (3a)
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Et
PMP
87
80
86
81
85
96
92
89
84
49
81
77
40
39
92
78
54
98:2
99:1
97:3
97:3
99:1
98:2
97:3
97:3
97:3
94:6
89:11
90:10
90:10
70:30
99:1
97:3
95:5
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
PMP
Ph
4-MeC 6H4 (3b)
4-MeOC6H4 (3c)
1-naph (3d)
2-naph (3e)
4-BrC6H4 (3f)
2-F C6H4 (3g)
3-F C6H4 (3h)
thiophen-2-yl (3i)
cyclohexyl (3j)
tert-butyl (3k)
CF3 (3l)
References
(1) For a review on asymmetric reductive aminations, see: (a) Tararov, V.
I.; Bo¨rner, A. Synlett 2005, 203. For reviews on catalytic asymmetric imine
reductions, see: (b) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic
Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York,
2000; Chapter 1. (c) Ohkuma, T.; Noyori, R. In Comprehensive Asym-
metric Catalysis, Suppl. 1; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: New York, 2004; p 43. (d) Nishiyama, H.; Itoh, K. In
Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New
York, 2000; Chapter 2.
(2) For asymmetric reductive aminations catalyzed by metal complexes, see:
(a) Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler, F. Synlett
1999, 867. (b) Kadyrov, R.; Riermeier, T. H. Angew. Chem., Int. Ed. 2003,
42, 5472. (c) Williams, G. D.; Pike, R. A.; Wade, C. E.; Wills, M. Org.
Lett. 2003, 5, 4227. (d) Kadyrov, R.; Riermeier, T. H.; Dingerdissen, U.;
Tararov, V.; Bo¨rner, A. J. Org. Chem. 2003, 68, 4067. (e) Chi, Y. X.;
Zhou, Y. G.; Zhang, X. M. J. Org. Chem. 2003, 68, 4120.
n-Pr (3m)
Ph (3n)
Ph (3o)
Ph (3p)
Me
Me
4-CF3C6H4
a Determined by HPLC. b Reaction was run for 96 h, using di-tert-butyl
2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate as the reductant. c After
168 h.
(3) For organocatalytic asymmetric reductive aminations, see: (a) Hoffmann,
S.; Seayad, A.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424. (b) Storer,
R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc.
2006, 128, 84. For organocatalytic asymmetric imine reduction using
Hantzsch dihydropyridine, see: (c) Singh, S.; Batra, U. K. Indian J. Chem.
1989, 27, 1. (d) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.;
Bolte, M. Org. Lett. 2005, 7, 3781. For organocatalytic asymmetric imine
reduction using silanes, see: (e) Iwasaki, F.; Onomura, O.; Mishima, K.;
Kanematsu, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42, 2525.
(f) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org.
Lett. 2004, 6, 2253. (g) Malkov, A. V.; Stoncius, S.; MacDougall, K. N.;
Mariani, A.; McGeoch, G. D.; Kocovsky, P. Tetrahedron 2006, 62, 264.
(h) Wang, Z.; Ye, X.; Wei, S.; Wu, P.; Zhang, A.; Sun, J. Org. Lett.
2006, 8, 999.
(4) For pioneering studies on the use of chiral phosphoric acid catalysts, see:
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int.
Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,
126, 5356. For other chiral phosphoric acid catalyzed reactions, see: (c)
Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126,
11804. (d) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc.
2005, 127, 9360. (e) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K.
AdV. Synth. Catal. 2005, 347, 1523. (f) Akiyama, T.; Morita, H.; Itoh, J.;
Fuchibe, K. Org. Lett. 2005, 7, 2583. (g) Rowland, G. B.; Zhang, H.;
Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am.
Chem. Soc. 2005, 127, 15696. (h) Terada, M.; Sorimachi, K.; Uraguchi,
D. Synlett 2006, 133. (i) Terada, M.; Machida, K.; Sorimachi, K. Angew.
Chem., Int. Ed. 2006, 45, 2254. (j) Rueping, M.; Sugiono, E.; Azap, C.
Angew. Chem., Int. Ed. 2006, 45, 2617 and cited refs 3 and 5. Also see:
(k) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
(5) For other TRIP-catalyzed reactions, see: (a) Akiyama, T.; Tamura, Y.;
Itoh, J. Synlett 2006, 141. (b) Seayad, J.; Seayad, A. M.; List, B. J. Am.
Chem. Soc. 2006, 128, 1086. For TRIP in asymmetric counteranion-
directed reduction of R,â-unsaturated aldehydes, see: (c) Mayer, S.; List,
B. Angew. Chem., Int. Ed. 2006, 45, 4193.
presumably via an oxidative cleavage of the hydratopicaldehyde
enamine intermediate.10
The generality of the methodology is shown in Table 2, using a
broad range of aldehydes and amines under optimized conditions.
A variety of 2-arylpropionaldehydes can be successfully used with
p-anisidine as the amine component (entries 1-10). Noteworthy,
except in case of thiophene derivative 3e, all of the products derived
from both electron-deficient and electron-rich aromatic substrates
were obtained in very good yields (80-96%) and enantiomeric
ratios (97:3-99:1). Aliphatic aldehydes can also be employed in
the dynamic kinetic resolution (entries 11-14), although with lower
enantiomeric ratios. Interestingly, an ethylsrather than a methyls
substituent in the R-position of the aldehyde is also well tolerated
(entry 15). Electronically different anilines (entries 16 and 17) have
also been studied. While the enantiomeric ratios remain high, the
best yields were obtained using electron-rich p-anisidine.
The absolute configuration of amine 3a was established via
oxidative removal of the PMP group.9 An example for the synthetic
utility of amines 3 is shown in eq 6. Upon sequential protection
with benzyl chloroformate (CbzCl) and treatment with cerium(IV)
ammonium nitrate (CAN), carbamate 6a was obtained in good yield
and with no loss of enantiomeric purity (eq 6).11
(6) For reviews, see: (a) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem.
Soc. Jpn. 1995, 68, 36. (b) Ward, R. S. Tetrahedron: Asymmetry 1995,
6, 1475. (c) Caddick, S.; Jenkins, K. Chem. Soc. ReV. 1996, 25, 447. (d)
Stecher, H.; Faber, K. Synthesis 1997, 1. (e) Huerta, F. F.; Minidis, A. B.
E.; Ba¨ckvall, J. E. Chem. Soc. ReV. 2001, 30, 321. (f) Perllissier, H.
Tetrahedron 2003, 59, 8291.
(7) A transfer hydrogenation of cyclic R-branched ketimines via dynamic
kinetic resolution has recently been described: Ros, A.; Magriz, A.;
Dietrich, H.; Ford, M.; Fernandez, R.; Lassaletta, J. M. AdV. Synth. Catal.
2005, 347, 1917.
(8) For selected examples, see: (a) Zuger, M. F.; Giovannini, F.; Seebach,
D. Angew. Chem., Int. Ed. Engl. 1983, 22, 1012. (b) Rein, T.; Zezschwitz,
P.; Wulff, C.; Reiser, O. Angew. Chem., Int. Ed. Engl. 1995, 34, 1023.
(c) Vogt, H.; Vanderheiden, S.; Bra¨se, S. Chem. Commun. 2003, 2448.
(d) Ward, D. E.; Jheengut, V.; Akinnusi, O. T. Org. Lett. 2005, 7, 1181.
(9) See Supporting Information.
In summary, we have developed an efficient enantioselective
reductive amination of R-branched aldehydes via dynamic kinetic
resolution. Our process is broad in scope, and both aromatic and
aliphatic aldehydes can be used, although enantiomeric ratios are
typically lower with simple aliphatic aldehydes. Currently, our
reaction is limited to the use of aromatic amines, but we expect to
overcome this limitation in ongoing studies in our laboratory.
(10) Witkop, B. J. Am. Chem. Soc. 1956, 78, 2873.
(11) Niwa, Y.; Takayama, K.; Shimizi, M. Bull. Chem. Soc. Jpn. 2002, 75,
1819.
Acknowledgment. We thank the DFG (Priority Program
Organocatalysis SPP1179) and Wacker for partially funding this
JA065404R
9
J. AM. CHEM. SOC. VOL. 128, NO. 40, 2006 13075