Angewandte
Chemie
completely under the SPPS conditions used to produce
PGLa.[4a,b,5,7] Now, all of the synthetic peptides containing 7
were obtained as single diastereomers, as shown by HPLC/
MS. It is known that PGLa assembles as an a helix when
bound to a lipid bilayer and permeabilizes bacterial mem-
branes.[4a,b] The biological activity of 15–18 was tested by
bacterial-growth inhibition assays, which can respond strongly
to single-point mutations (see the Supporting Information).
This proved that none of the labeled analogues display any
functional deviations from the wild-type peptide, suggesting
that the new building block 7 did not induce any structural
perturbations. Structure analysis of the labeled peptides 15–
18 by circular dichroism proved that no distortion was
induced by the new unit in any of the positions examined
(see Figure 2).
can be used to study their alignment, structure, and dynamics
by means of solid-state 19F NMRspectroscopy.
Received: January 26, 2006
Revised: May 15, 2006
Published online: July 25, 2006
Keywords: amino acids · fluorine · membrane-active peptides ·
.
NMR spectroscopy
[1] M. A. Danielson, J. J. Falke, Annu. Rev. Biophys. Biomol. Struct.
1996, 25, 163.
[2] a) A. S. Ulrich, Prog. Nucl. Magn. Reson. Spectrosc. 2004, 46, 1;
b) A. S. Ulrich in Encyclopedia of Spectroscopy and Spectrom-
etry (Eds.: J. Lindon, G. Tranter, J. Holmes), Academic Press,
New York, 2000, p. 813.
[3] a) C. Frieden, S. D. Hoetzli, J. G. Bann, Methods Enzymol. 2004,
380, 400; b) T. L. Hendrickson, V. de CrØcy-Lagard, P. Schim-
mel, Annu. Rev. Biochem. 2004, 73, 147.
[4] a) R. W. Glaser, C. Sachse, U. H. N. Dürr, P. Wadhwani, S.
Afonin, E. Strandberg, A. S. Ulrich, Biophys. J. 2005, 88, 3392;
b) R. W. Glaser, C. Sachse, U. H. N. Dürr, P. Wadhwani, A. S.
Ulrich, J. Magn. Reson. 2004, 168, 153; c) S. Afonin, U. H. N.
Dürr, R. W. Glaser, A. S. Ulrich, Magn. Reson. Chem. 2004, 42,
195; d) S. L. Grage, J. Wang, T. A. Cross, A. S. Ulrich, Biophys. J.
2002, 83, 3336; e) J. Salgado, S. L. Grage, L. H. Kondejewski,
R. N. McElhaney, R. S. Hodges, A. S. Ulrich, J. Biomol. NMR
2001, 21, 191; f) O. Toke, R. D. OꢀConnor, T. K. Weldeghiorghis,
W. L. Maloy, R. W. Glaser, A. S. Ulrich, J. Schaefer, Biophys. J.
2004, 87, 675; g) O. Toke, W. L. Maloy, S. J. Kim, J. Blazyk, J.
Schaefer, Biophys. J. 2004, 87, 662; h) E. Strandberg, P.
Wadhwani, P. Tremoulihac, U. H. N. Dürr, A. S. Ulrich, Biophys.
J. 2006, 90, 1676.
[5] A. S. Ulrich, P. Wadhwani, U. H. N. Dürr, S. Afonin, R. W.
Glaser, C. Sachse, P. Tremouilhac, M. Berditchevskaia in NMR
Spectroscopy of Biological Solids (Ed.: A. Ramamoorthy), CRC,
Boca Raton, 2006.
[6] M. Cotten, C. Tian, D. D. Busath, R. B. Shirts, T. A. Cross,
Biochemistry 1999, 38, 9185.
[7] S. Afonin, R. W. Glaser, M. Berditchevskaia, P. Wadhwani, K. H.
Gührs, U. Möllmann, A. Perner, A. S. Ulrich, ChemBioChem
2003, 4, 1151.
Figure 2. Circular dichroism spectra of the PGLa wild-type peptide and
its l-CF3-Bpg-labeled analogues 15–18 in the presence of sodium
dodecyl sulfate micelles (5 mmol), normalized to the peptide concen-
tration.
[8] a) R. W. Glaser, A. S. Ulrich, J. Magn. Reson. 2003, 164, 104;
b) R. Ulrich, R. W. Glaser, A. S. Ulrich, J. Magn. Reson. 2003,
164, 115.
[9] W. Adcock, Y. Baran, A. Filippi, M. Speranza, N. A. Trout, J.
Org. Chem. 2005, 70, 1029.
[10] R. Pellicciari, M. Raimondo, M. Marinozzi, B. Natalini, G.
Costantino, C. Thomsen, J. Med. Chem. 1996, 39, 2874.
[11] K. B. Wiberg, S. T. Waddell, J. Am. Chem. Soc. 1990, 112, 2194.
[12] J. L. Adcock, A. A. Gack, J. Org. Chem. 1992, 57, 6206.
[13] T. K. Chakraborty, G. V. Reddy, K. A. Hussain, Tetrahedron
Lett. 1991, 32, 7597.
Finally, we reconstituted the labeled peptides into
mechanically oriented phospholipid bilayers for a compre-
hensive solid-state 19F NMRanalysis. In brief, 15–18 behaved
the same way as the PGLa analogues that had been previously
labeled with 3 and 4.[4a,b,5,7] Namely, 1) they bind to and
uniformly align in 1,2-dimyristoyl-sn-glycero-3-phosphocho-
line (DMPC) bilayers; 2) they rotate around the bilayer
normal; 3) they realign in
a concentration-dependent
[14] CCDC-293724 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
cam.ac.uk/data_request/cif.
[15] The physical properties of the amino acids (see the Supporting
com).
manner; and 4) for a given concentration the labeled posi-
tions exhibit the expected dipolar coupling and sign compat-
ible with the known a-helical conformation. Therefore, we
conclude that CF3-Bpg satisfies all chemical and conforma-
tional requirements as a good labeling unit for peptide
structure analysis by solid-state 19F NMRspectroscopy.
[16] C. Branden, J. Tooze, Introduction to Protein Structure, Garland
Publishing, New York, 1999.
net).
In summary, we have synthesized the novel conforma-
tionally rigid fluorinated l a-amino acid 7 (CF3-Bpg). The
overall yield of the synthesis is 35%, which makes it attractive
for an intermediate-scale production of 7.[17] This amino acid
was designed as a label for membrane-bound peptides and
Angew. Chem. Int. Ed. 2006, 45, 5659 –5661
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5661