10.1002/ejoc.201701214
European Journal of Organic Chemistry
FULL PAPER
chromatography (PE/Et2O 80:20 → 40:60) gave cis-cyclohexanol 9a as a
colourless oil (6 mg, 13%), trans-cyclohexanol 8 as a white solid (19 mg,
38%) and protected cis-cyclohexanol 9b as a pale yellow oil (8 mg, 13%).
From 5b: According to the general procedure E using 5b (0.3 mmol, 57
[7]
a) F. Vogt, K. Jꢀdicke, J. Schrꢀder, T. Bach, Synthesis 2009, 4268-
4273; b) T. Bach, K. Jödicke, K. Kather, R. Fröhlich, J. Am. Chem. Soc.
1997, 119, 2437-2445; c) T. Bach, F. Eilers, K. Kather, Liebigs Ann.
1997, 1529-1536; d) T. Bach, K. Jödicke, B. Wibbeling, Tetrahedron
1996, 52, 10861-10878; e) T. Bach, Liebigs Ann. 1995, 855-865; f) T.
Bach, K. Jödicke, K. Kather, J. Hecht, J. Angew. Chem. Int. Ed. 1995,
34, 2271-2273; g) T. Bach, Tetrahedron Lett. 1994, 35, 5845-5848; h)
K. Jꢀdicke, T. Bach, Chem. Ber. 1993, 126, 2457-2466 and references
therein.
mg,
1 equiv.) and AlCl3 (0.45 mmol, 60 mg, 1.5 equiv.) in
dichloromethane (6 ml) at -78 °C, flash chromatography (PE/Et2O 80:20
→ 40:60) gave cis-cyclohexanol 9a as a colourless oil (27 mg, 47%),
trans-cyclohexanol 8 as a white solid (13 mg, 22%) and cyclohexenone 7
as a white solid (6 mg, 10%). 8: Rf (50:50 PE/Et2O): 0.05; MP: 93-94 °C;
IR ν: 3463, 3052, 3030, 2944, 2862, 1698, 1400, 1321, 1022, 750, 735;
1H NMR (250 MHz, CDCl3) δ: 7.43-7.27 (m, 3H), 7.20-7.11 (m, 2H), 4.01
(dt, J = 10.4, 4.2 Hz, 1H), 3.56 (d, J = 10.4 Hz, 1H), 2.61-2.40 (m, 2H),
2.40-2.29 (m, 1H), 2.19-2.05 (m, 1H), 1.97-1.79 (m, 1H), 1.79-1.59 (m,
2H); 13C NMR (90 MHz, CDCl3) δ: 207.3 (C), 134.8 (C), 129.9 (2CH),
129.0 (2CH), 128.0 (CH), 75.0 (CH), 67.2 (CH), 41.1 (CH2), 33.1 (CH2),
20.9 (CH2); HRMS (ESI+): Calcd. for C12H14O2Na (M + Na+), m/z
213.0886, found 213.0888; X-ray: CCDC 1550693. 9a: Rf (50:50
[8]
[9]
For related work by other groups, see: a) H. J. Park, U. C. Yoon, H.-Y.
Lee, D. W. Cho, P. S. Mariano, J. Org. Chem. 2012, 77, 10304-10313;
b) M. Abe, K. Tachibana, K. Fujimoto, M. Nojima, Synthesis 2001,
1243-1247; c) C. Y. Gan, J. N. Lambert, J. Chem. Soc., Perkin Trans. 1
1998, 2363-2372; d) N. Shimizu, S. Yamaoka, Y. Tsuno, Bull. Chem.
Soc. Jpn. 1983, 56, 3853-3854.
a) T. Bach, K. Kather, O. Krämer, J. Org. Chem. 1998, 63, 1910-1918;
b) T. Bach, F. Eilers, Eur. J. Org. Chem. 1998, 2161-2169; c) T. Bach,
K. Kather, J. Org. Chem. 1996, 61, 7642-7643.
1
PE/Et2O): 0.2; IR ν: 3437, 3030, 2944, 2870, 1706, 1598, 1122, 698; H
NMR (360 MHz, CDCl3) δ: 7.40-7.25 (m, 5H), 4.32 (d, J = 2.8 Hz, 1H),
3.74 (d, J = 2.8 Hz, 1H), 2.60-2.50 (m, 1H), 2.49-2.37 (m, 2H), 2.37-1.87
(m, 4H); 13C NMR (90 MHz, CDCl3) δ: 208.2 (C), 136.2 (C), 130.0 (2CH),
128.6 (2CH), 127.5 (CH), 74.5 (CH), 62.1 (CH), 41.9 (CH2), 32.1 (CH2),
21.0 (CH2); HRMS (ESI+): Calcd. for C12H14O2Na (M + Na+), m/z
213.0886, found 213.0891. Spectral data were identical to those
described in the literature.[26] 9b: Rf (50:50 PE/Et2O): 0.65; 1H NMR (250
MHz, CDCl3) δ: 7.35-7.26 (m, 5h), 4.37-4.31 (m, 1H), 3.75 (d, J = 2.7 Hz,
1H), 2.65-2.52 (m, 2H), 2.47-2.30 (m, 2H), 2.05-1.91 (m, 2H), -0.13 (s,
9H); 13C NMR and IR: The low stability of this compound and the small
isolated amount of it did not allow for a 13C NMR experiment nor IR
analysis; HRMS (ESI+): Calcd. for C15H22O2SiNa (M + Na+), m/z
285.1281, found 285.1283.
[10] a) T. Bach, K. Kather, J. Org. Chem. 1996, 61, 3900-3901; b) T. Bach,
C. Lange, Tetrahedron Lett. 1996, 37, 4363-4364; c) T. Bach, Liebigs
Ann. 1995, 1045-1053; d) T. Bach, Tetrahedron Lett. 1994, 35, 1855-
1858.
[11] a) T. Bach, K. Kather, Tetrahedron 1994, 50, 12319-12328; b) T. Bach,
F. Eilers, J. Org. Chem. 1999, 64, 8041-8044.
[12] a) A. F. Kassir, S. S. Ragab, T. A. M. Nguyen, F. Charnay-Pouget, R.
Guillot, M.-C. Scherrmann, T. Boddaert, D. J. Aitken, J. Org. Chem.
2016, 81, 9983-9991; b) N. Melis, F. Secci, T. Boddaert, D. J. Aitken, A.
Frongia, Chem. Commun. 2015, 51, 15272-15275; c) D. J. Aitken, P.
Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F.
Secci, Adv. Synth. Catal. 2014, 356, 941-945; d) D. J. Aitken, A. M.
Bernard, F. Capitta, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F.
Secci, M. Spiga, Org. Biomol. Chem. 2012, 10, 5045-5048; e) X. Gu, M.
Xian, S. Roy-Faure, J. Bolte, D. J. Aitken, T. Gefflaut, Tetrahedron Lett.
2006, 47, 193-196.
Acknowledgements
[13] For selected approaches, see: a) A. G. Griesbeck, S. Stadmüller, J. Am.
Chem. Soc. 1990, 112, 1281-1283; b) M. H. Wu, K. B. Hansen, E. N.
Jacobsen, Angew. Chem. Int. Ed. 1999, 38, 2012-2015; c) H.
Suginome, T. Kondoh, C. Gogonea, V. Singh, H. Gotō and E. Ōsawa,
J. Chem. Soc., Perkin Trans. 1, 1995, 69-81.
Financial support from the MIUR, Rome, and by the University of
Cagliari is acknowledged.
[14] For examples, see: a) R. Vorberg, N. Trapp, E. M. Carreira, K. Muller,
Chem. Eur. J. 2017, 23, 3126-3138; b) L. Miesch, T. Welsch, M.
Miesch, Org. Biomol. Chem. 2013, 11, 4025-4029; c) Z. S. Kean, A. L.
B. Ramirez, Y. Yan, S. L. Craig, J. Am. Chem. Soc. 2012, 134, 12939-
12942; d) J.-B. Farcet, M. Himmelbauer, J. Mulzer, Org. Lett. 2012, 14,
2195-2197; e) M. Le Liepvre, J. Ollivier, D. J. Aitken, Eur. J. Org.
Chem. 2009, 5953-5962.
Keywords: Lewis acids • Oxetanol • Paternò-Büchi reaction •
Photochemistry • Rearrangement
[1]
[2]
B. Das, K. Damodar, In Heterocycles in Natural Product Synthesis,
(Eds.: K. C. Majumdar, S. K. Chattopadhyay), Wiley-VCH, Weinheim,
2001, pp. 63-90.
[15] a) H. Yuan, D. G. I. Kingston, B. H. Long, C. A. Fairchild, K. A.
Johnston, Tetrahedron 1999, 55, 9089-9100; b) X. Liang, D. G. I.
Kingston, B. H. Long, C. A. Fairchild, K. A. Johnston, Tetrahedron
1997, 53, 3441-3456; c) E. L. Shapiro, L. Weber, S. Polovsky, J.
Morton, A. T. McPhail, K. D. Onan, D. H. R. Barton, J. Org. Chem. 1976,
41, 3940-3946; d) R. Schumacher, J. Gutzwiller, C. Tamm, Helv. Chim.
Acta 1971, 54, 2080-2093.
a) J. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Müller, E. M.
Carreira, Angew. Chem. Int. Ed. 2010, 49, 9052-9067; b) G. Wuitschik,
E. M. Carreira, B. Wagner, H. Fischer, I. Parrilla, F. Schuler, M. Rogers-
Evans, K. Müller, J. Med. Chem 2010, 53, 3227-3246.
[3]
[4]
a) G. V. M. Sharma, G. Venkateshwarlu, S. Katukuri, K. V. S.
Ramakrishna, A. V. S. Sarma, Tetrahedron 2015, 71, 2158-2167; b) N.
H. Powell, G. J. Clarkson, R. Notman, P. Raubo, N. G. Martin, M.
Shipman, Chem. Commun. 2014, 50, 8797-8800.
[16] N. Shimizu, T. Miyahara, M. Mishima, Y. Tsuno, Bull. Chem. Soc. Jpn.
1989, 62, 2032-2039.
a) C. A. Malapit, A. R. Howell, J. Org. Chem. 2015, 80, 8489-8495; b) A.
Mahal, Eur. J. Chem. 2015, 6, 357-366; c) F. Bertolini, S. Crotti, V. Di
Bussolo, F. Macchia, M. Pineschi, J. Org. Chem. 2008, 73, 8998-9007.
J. A. Bull, R. A. Croft, O. A. Davis, R. Doran, K. F. Morgan, Chem. Rev.
2016, 116, 12150-12233.
[17] A 1-phenylthio-derivative has been prepared via a Lewis acid-mediated
cyclisation; see: D. Craig, R. M. Lawrence, D. J. Tapolczay, Synlett
1997, 1001-1003.
[5]
[6]
[18] a) A. G. Griesbeck, S. Stadtmꢁller, J. Am. Chem. Soc. 1991, 113,
6923-6928; b) T. Bach, J. Schröder, J. Org. Chem. 1999, 64, 1265-
1273.
Reviews: a) M. D’Auria, R. Racioppi, Molecules 2013, 18, 11384-
11428; b) M. Abe, In Handbook of Synthetic Photochemistry, (Eds.: A.
Albini, M. Fagnoni), Wiley-VCH, New York, 2010, pp. 217-239; c) A. G.
Griesbeck, In Synthetic Organic Photochemistry, (Eds.: A. G. Griesbeck,
J. Mattay), Marcel Dekker, New York, 2005, pp. 89-139; d) T. Bach,
Synthesis 1998, 683-703.
[19] a) A. G. Griesbeck, M. Abe, S. Bondock, Acc. Chem. Res. 2004, 37,
919-928; b) A. G. Griesbeck, H. Mauder, S. Stadtmꢁller, Acc. Chem.
Res. 1994, 27, 70-75.
[20] Y. S. Sanghvi, A. S. Rao, J. Heterocycl. Chem. 1984, 21, 317-320.
This article is protected by copyright. All rights reserved.