S. Tang et al. / Tetrahedron Letters 47 (2006) 7671–7675
7675
and J = 1.0 Hz, exterior Ar-H), 6.950 (8H, d, J = 7.5 Hz,
exterior Ar-H), 7.121 (4H, dd, J = 8.0 and J = 1.0 Hz,
core Ar-H), 7.248 (4H, td, J = 7.5 and J = 1.0 Hz, core
Ar-H), 7.428 (8H, td, J = 7.0 and J = 1.5 Hz, exterior Ar-
H), 7.486 (8H, td, J = 7.0 and 1.5 Hz, exterior Ar-H),
7.774 (8H, dd, J = 8.0 and 1.5 Hz, exterior Ar-H), 7.934
(4H, dd, J = 8.0 and 1.5 Hz, core Ar-H), 10.485 (8H, s,
Ar-OH); 13C NMR (CDCl3) (75 MHz, ppm): 28.731 (core
succ.-CH2), 28.914 and 29.021 (exterior succ.-CH2), 62.770
and 62.853 (exterior and core Glycerol–CH), 69.011 and
69.225 (exterior and core Glycerol–CH2), 111.680,
117.647, 119.371, 129.916, 136.58, and 161.696 (exterior
Ar-C), 122.133, 123.827, 126.177, 131.702, 134.281, and
150.770 (core Ar-C), 163.444 (Ar-CO), 169.494, 170.746,
and 171.364 (succ.-CO); MALDI-TOF-MS observed:
[M+Na]+ 2427.4 and [M+K]+ 2443.4; calculated for
possess a number of drug entities cascading from the
core, interior and exterior regions, and also display a
large number of functional groups at the periphery.
Such a novel dendritic prodrug design provides a prom-
ising hydrolyzable drug delivery system for sequential
and quantitative drug release. With a much higher drug
loading than has heretofore been archived, the dendritic
prodrug could potentially greatly exceed the effective-
ness of the current repertoire of drug vehicles and offer
a new platform for drug delivery.
Acknowledgements
Support for this research from US National Sci-
ence Foundation (NUE-0407298), Research Corpora-
tion (CC-6059), American Chemical Society Petroleum
Research Fund (PRF # 40998-GB4) and Central
Michigan University (FRCE and PRIF) is gratefully
acknowledged.
C122H106O52: 2404.1.
HO-G2 14: 1H NMR(CDCl3) (500 MHz, ppm): 2.620 (4H,
s, core succ.-CH2), 2.749–2.803 (24H, m, exterior and
middlesucc.-CH2), 2.912–2.976 (24H, m, exterior and
middle succ.-CH2), 4.337–4.422 (12H, m, interior Gly-
cerol–CH2), 4.439–4.516 (28H, m, exterior and interior
Glycerol–CH2), 4.601–4.634 (16H, m, exterior Glycerol–
CH2), 5.446 (2H, m, core Glycerol–CH), 5.509 (4H, p,
J = 5.0 Hz, middle Glycerol-CH), 5.570 (8, p, J = 5.0 Hz,
exterior Glycerol–CH), 6.793 (16H, t, J = 7.5 Hz, exterior
Ar-H), 6.943 (16H, d, J = 8.0 Hz, exterior Ar-H), 7.014–
7.030 (12H, m, interior Ar-H), 7.403–7.481 (28H, t,
exterior and interior Ar-H), 7.766 (16H, dd, J = 8.0 and
1.5 Hz, exterior Ar-H), 7.911–7.927 (12H, m, interior Ar-
H); 13C NMR (CDCl3) (75 MHz, ppm): 28.922 and 29.036
(succ.-CH2), 62.869 (Glycerol–CH), 69.026 and 69.324
(Glycerol–CH2), 111.703, 117.639, 119.371, 129.924,
136.142, and 161.704 (exterior Ar-C), 122.156, 123.797,
123.926, 126.177, 131.709, 134.227, 150.747, and 150.876
(interior Ar-C), 163.360 and 163.482 (Ar-CO), 169.494,
170.723, 170.807, 171.356, and 171.410 (succ.-CO);
MALDI-TOF-MS observed: [M+Na]+ 5742.4; calculated
for C290H250O124: 5719.0.
References and notes
1. Degroot, F. M.; Damen, E. W.; Scheeren, H. W. Curr.
Med. Chem. 2001, 8, 1093.
2. Li, Y.-Q.; You, H.-B. Pharm. Res. 2006, 23, 1.
3. Duncan, R. Anti-Cancer Drugs 1992, 3, 175.
4. Svenson, S.; Tomalia, D. A. Adv. Drug Delivery Rev. 2005,
57, 2106.
5. Kricheldorf, H.; Gerken, A.; Yulchibaev, B.; Friedrich, C.
J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2013.
6. Schmeltzer, R.; Schmealenberg, K.; Uhrich, K. Biomac-
romolecules 2005, 6, 359.
7. (a) Maraval, V.; Caminade, A.-W.; Majoral, J.-P.; Blais,
J.-C. Angew. Chem., Int. Ed. 2003, 42, 1822–1826; (b)
Maraval, V.; Pyzowski, J.; Caminade, A.-W.; Majoral,
J.-P. J. Org. Chem. 2003, 68, 6043–6046; (c) Wu, P.;
Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
HO-G3 18: 1H NMR (CDCl3) d 1H (500 MHz, ppm):
2.622 (4H, s, core succ.-CH2), 2.761–2.796 (56H, m, succ.-
CH2), 2.923–2.966 (56H, m, succ.-CH2), 4.334–4.405
(28H, m, interior Glycerol–CH2), 4.446–4.508 (60H, m,
exterior and interior Glycerol–CH2), 4.593–4.625 (32H, m,
exterior Glycerol–CH2), 5.452 (2H, m, core Glycerol–CH),
5.501 (12H, m, middle Glycerol–CH), 5.561 (16H, p,
J = 5.0 Hz, exterior Glycerol–CH), 6.783 (32H, t,
J = 7.5 Hz, exterior Ar-H), 6.934 (32H, d, J = 8.5 Hz,
exterior Ar-H), 7.004–7.021 (28H, m, interior Ar-H),
7.129–7.215 (28H, m, interior Ar-H), 7.393–7.466 (60H,
m, exterior and interior Ar-H), 7.758 (32H, d, J = 8.0,
exterior Ar-H), 7.892–7.918 (28H, m, interior Ar-H),
10.474 (32H, s, Ar-OH); 13C NMR (CDCl3) (75 MHz,
ppm): 28.922 and 29.036 (succ.-CH2), 62.869 (Glycerol–
CH), 69.034 and 69.324 (Glycerol–CH2), 111.710, 117.639,
119.371, 129.931, 136.142, and 161.696 (exterior Ar-C),
122.164, 123.789, 126.185, 131.709, 134.227, 150.739, and
150.854 (interior Ar-C), 163.390 and 163.489 (Ar-CO),
169.494, 170.730, 170.814, 171.356, and 171.417 (succ.-
CO); MALDI-TOF-MS observed: [M+H]+ 12349.7; cal-
culated for C290H250O124: 12348.5.
´
Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.;
Fokin, V. V. Angew. Chem., Int. Ed. 2004, 23, 3928–3932.
8. Luman, N.; Smeds, K.; Grinstaff, M. Chem. Eur. J. 2003,
9, 5618.
9. Spectroscopic data of the dendritic salicylate prodrugs
G0.0–G3.0: HO-G0 6: 1H NMR (CDCl3) (500 MHz,
ppm): 2.699 (4H, s, succ.-CH2), 4.490–4.526 (4H, m,
Glycerol–CH2), 4.617–4.651 (4H, m, Glycerol–CH2),
5.521 (2H, pentet, J = 5.0 Hz, Glycerol–CH), 6.878 (4H,
td, J = 7.5 and 1.0 Hz, Ar-H), 6.977 (4H, dd, J = 8.5 and
1.0 Hz, Ar-H), 7.462 (4H, td, J = 8.0 and 1.0 Hz, Ar-H),
7.805 (4H, dd, J = 8.0 and 1.5 Hz, Ar-H); 13C NMR
(CDCl3) (75 MHz, ppm): 28.838 (succ.-CH2), 62.747
(Glycerol–CH),
69.095
(Glycerol–CH2),
111.687,
117.700, 119.363, 129.893, 136.203, and 161.742 (Ar-C),
169.471 (Ar-CO), 171.249 (succ.-CO); MALDI-TOF-MS
observed: [M+Na]+ 769.0 and [M+K]+ 785.0; calculated
for C38H34O16: 746.2.
HO-G1 10: 1H NMR (CDCl3) (500 MHz, ppm): 2.631(4H,
s, core succ.-CH2), 2.792 (8H, t, J = 6.8 Hz, exterior succ.-
CH2), 2.961 (8H, t, J = 6.8 Hz, exterior succ.-CH2), 4.362–
4.398 (4H, m, core Glycerol–CH2) 4.446–4.479 (4H, m,
core Glycerol–CH2), 4.497–4.532 (8H, m, exterior Gly-
cerol–CH2), 4.616–4.649 (8H, m, exterior Glycerol–CH2),
5.445 (2H, t, J = 5.0 Hz, core Glycerol–CH), 5.576 (4H, t,
J = 5.0 Hz, exterior Glycerol–CH), 6.804 (8H, td, J = 4.0
10. GPC experimental: All samples were analyzed using a
Viscotek GPCmax VE 2001 Module equipped with a
Viscotek TDA 302 Triple Detector Array, a ViscoGEL
microstyrogel mixed-bed column, linear poly(styrene)
calibration and THF as elution solvent at 1.0 mL/min.