0.005 ppm discarding significant self-aggregation processes in any
of the studied systems.
95, 2529; (e) A. Bianchi, E. Garc´ıa-Espan˜a and K. Bowman-James,
Supramolecular Chemistry of Anions, Wiley-VCH, New York, 1997.
2 (a) P. A. Gale, Coord. Chem. Rev., 2003, 240, 191; (b) J. M. Llinares,
D. Powell and K. Bowman-James, Coord. Chem. Rev., 2003, 240, 57;
(c) K. Bowman-James, Acc. Chem. Res., 2005, 38, 671.
3 A. Metzger, V. A. Lynch and E. V. Anslyn, Angew. Chem., Int. Ed.
Engl., 1997, 36, 862.
The 31P NMR spectra were recorded on a Bruker Avance PX
300 MHz operating at 121.495 MHz. Chemical shifts are relative
to an external reference of 85% H3PO4. Adjustments to the desired
pH were made using drops of DCl or NaOD solutions. The pD
was calculated from the measured pH values using the correlation,
pH = pD − 0.4.24
4 (a) M. Demeunynck, C. Bailly and W. D. Wilson, Small Molecule
DNA and RNA Binders, From Synthesis to Nucleic Acid Complexes,
Wiley-VCH, New York, 2003; (b) H.-J. Schneider and A. Yatsimirsky,
Principles and Methods in Supramolecular Chemistry, Wiley, Chichester,
UK, 2000; (c) D. Kumar Chand, H.-J. Schneider, J. A. Aguilar, F. Escart´ı
and E. Garc´ıa-Espan˜a, Inorg. Chim. Acta, 2001, 316, 71; (d) H.-J.
Schneider and T. Blatter, Angew. Chem., Int. Ed. Engl., 1992, 31, 1207.
5 For a preliminary report on this behaviour, see: N. Lomadze, E.
Gogritchiani, H.-J. Schneider, M. T. Albelda, J. Aguilar, E. Garc´ıa-
Espan˜a and S. V. Luis, Tetrahedron Lett., 2002, 43, 7801.
6 For a recent review on tripodal amines, see: A. G. Blackman,
Polyhedron, 2005, 24, 1.
7 A report on the interaction of the tripodal receptors with nucleic acid
models can be seen in: N. Lomadze, H.-J. Schneider, M. T. Albelda, E.
Garc´ıa-Espan˜a and B. Verdejo, Org. Biomol. Chem., 2006, 4, 1755.
8 M. T. Albelda, E. Garc´ıa-Espan˜a, L. Gil, J. C. Lima, C. Lodeiro, J. S.
De Melo, M. J. Melo, A. J. Parola, F. Pina and C. Soriano, J. Phys.
Chem. B, 2003, 107, 6573.
9 (a) A. Bencini, A. Bianchi, E. Garc´ıa-Espan˜a, M. Micheloni and
J. A. Ram´ırez, Coord. Chem. Rev., 1999, 188, 97; (b) C. Frassinetti, L.
Alderighi, P. Gans, A. Sabatini, A. Vacca and S. Ghelli, Anal. Bioanal.
Chem., 2003, 376, 1041; (c) J. E. Sarnesky, H. L. Surprenant, F. K.
Molen and C. N. Reilley, Anal. Chem., 1975, 47, 2116; (d) D. N.
Hague and A. D. Moreton, J. Chem. Soc., Perkin Trans. 2, 1994,
265.
10 R. M. Smith and A. E. Martell, NIST Stability Constants Database,
version 4.0 National Institute of Standards and Technology, Washington,
DC, 1997.
1H paramagnetic NMR measurements were acquired on a
Bruker Avance 400 spectrometer operating at 399.91 MHz. One-
dimensional spectra were recorded in D2O solvent with presat-
uration of the H2O signal during part of the relaxation delay to
eliminate the H2O signal. Relaxation delay times of 50–200 ms, 30–
80 kHz spectral widths ranging and acquisition times of 60–200 ms
were used. 1D spectra were processed using exponential line-
broadening weighting functions as apodization with values of 20–
40 Hz. Chemical shifts were referenced to residual solvent protons
of D2O resonating at 4.76 ppm (298 K) relative to TMS. Sample
1
concentrations for paramagnetic H NMR were 2.5 mmol dm−3
Cu2TAL complexes. The longitudinal relaxation times of the
hyperfine shifted resonances were determined using the inversion
recovery pulse sequence d1 − 180◦ − s − 90◦ − acq,25 where d1 is the
relaxation delay and acq the acquisition time), 14 values of s were
selected between 0.4 ms and 300 ms, (d1 + acq) values were at least
five times the longest expected T1 ranging from 100 to 400 ms, and
the number of scans was 8000. The T1 values were calculated from
the inversion–recovery equation. Transversal relaxation times were
obtained measuring the line broadening of the isotropically shifted
11 (a) F. Thaler, C. D. Hubbard, F. W. Heinemman, R. Van Eldik, S.
Schlinder, I. Fa´bian, A. M. Dittler-Klingemann, F. E. Hahn and C.
Orvig, Inorg. Chem., 1998, 37, 4022; (b) J. R. Hartam, R. W. Bachet, W.
Pearson, R. J. Wheat and J. H. Callahan, Inorg. Chim. Acta, 2003, 343,
119.
−1
signals at half-height through the equation T2 = pDm1/2
.
Electrospray mass spectrometry
12 G. Anderregg and V. Gramlich, Helv. Chim. Acta, 1994, 77, 685.
The electrospray mass spectrum was recorded on a Bruker
Esquire 3000plus, Bruker Daltonics mass spectrometer (Agilent
Headquarters, Palo Alto, USA). ES-MS was carried out in the
positive ion mode. Scanning was performed from m/z = 300 to
1400. For electrospray ionization, the drying gas was set at a flow
rate of 2.5 lL min−1, with capillary voltage of 166 V. Non-buffered
solutions containing AMP : TAL ([TAL] = 1.00 × 10−3 mol dm−3,
molar ratio 6 : 1) in water were injected into the mass spectrometer
source with a syringe pump (Cole-Parmer Instruments Company,
Illinois, USA) at a flow rate of 2 L min−1. The sampling cone
voltage (VC) was set at 40 V.
13 The logarithms of the protonation constants in 0.15 mol dm−3 NaClO4
at 298.1 K are: log KHL/H·L = 10.39(3), log KH
= 10.33(3),
L·H = 8.02(2),
2 L/HL·H
log KH
L·H = 9.64(2), log KH
L·H = 8.89(2), log KH
3 L/H2
4 L/H3
5 L/H4
log K
= 7.39(2).
H6 L/H5 L·H
14 Protonation constants for AMP determined at 298.1 K in 0.15 mol dm−3
NaCl: log KHL/H·L = 6.32(1); log KH
= 10.26(1).
2 L/HL·H
15 For a recent review on anion coordination chemistry, see for instance:
S. Kubik, C. Reyheller and S. Stu¨we, J. Inclusion Phenom. Macrocycl.
Chem., 2005, 52, 137.
16 C. Miranda, F. Escart´ı, L. Lamarque, E. Garc´ıa-Espan˜a, P. Navarro, J.
Latorre, F. Lloret, H. R. Jime´nez and J. R. Yunta, Eur. J. Inorg. Chem.,
2005, 189.
17 B. Verdejo, J. Aguilar, A. Dome´nech, C. Miranda, P. Navarro, H. R.
Jime´nez, C. Soriano and E. Garc´ıa-Espan˜a, Chem. Commun., 2005,
3086.
18 M. Bera, W. T. Wong, G. Aromi and D. Ray, Eur. J. Inorg. Chem., 2005,
Acknowledgements
2526.
19 E. Garc´ıa-Espan˜a, M.-J. Ballester, F. Lloret, J.-M. Moratal, J. Faus and
A. Bianchi, J. Chem. Soc., Dalton Trans., 1988, 101.
20 M. Fontanelli and M. Micheloni, Proceedings of the Spanish-Italian
Congress on Thermodynamic of Metal Complexes, Diputacio´n de
Castello´n, Castello´n, Spain, 1990.
We would like to thank Prof. H.-J. Schneider for helpful dis-
cussion. Financial support from Grupos S03/196 and DGICYT
project BQU2003-09215-CO3-01 (Spain) is gratefully acknowl-
edged. J. M. Ll. thanks MCYT of Spain for a Ramo´n y Cajal
contract.
21 G. Gran, Analyst, 1952, 77, 661; F. J. C. Rossotti and H. Rossotti,
J. Chem. Educ., 1965, 42, 375.
22 P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43, 1739.
23 E. Martell, R. M. Smith and R. J. Motekaitis, NIST Critically Selected
Stability Constants of Metal Complexes Database, NIST Standard
Reference Database, version 4, 1997.
24 A. K. Convington, M. Paabo, R. A. Robinson and R. G. Bates, Anal.
Chem., 1968, 40, 700.
References
1 (a) R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem.
Rev., 1991, 91, 1721; (b) A. Bianchi, M. Micheloni and P. Paoletti,
Coord. Chem. Rev., 1991, 110, 17; (c) A. Bencini, A. Bianchi, P.
Paoletti and P. Paoli, Coord. Chem. Rev., 1992, 120, 51; (d) R. M.
Izatt, K. Pawlak, J. S. Bradshaw and L. Bruening, Chem. Rev., 1995,
25 R. L. Vold, J. S. Waugh, M. P. Klein and D. E. Phelps, J. Chem. Phys.,
1968, 48, 3831.
This journal is
The Royal Society of Chemistry 2006
Dalton Trans., 2006, 4474–4481 | 4481
©