Alajar´ın et al.
fully optimized by analytical gradient techniques. Harmonic
frequency calculations at each level of theory verified the identity
of each stationary point as a minimum or a transition state and
were used to provide an estimation of the zero-point vibrational
energies (ZPVE), which were not scaled. IRC calculations were
carried out in order to determine what minima each transition
structure connects. Second-order perturbation analyses were achieved
with the NBO (natural bond orbital) method.41 NICS values were
obtained at the B3LYP/6-31+G* level with the GIAO (gauge-
independent atomic orbital) method.42
Preparation of 2-Arylselenoquinolin-4(3H)-ones 5m-o. To a
solution of the corresponding Se-aryl 2-azidoselenobenzoate 2 (1
mmol) in anhydrous toluene (15 mL) was added triphenylphosphine
(0.26 g, 1 mmol), and the reaction mixture was stirred at room
temperature for 4 h. Next, a solution of diphenylketene (0.19 g, 1
mmol) or methylphenylketene (0.13 g, 1 mmol) in anhydrous
toluene (2 mL) was added. The new reaction mixture was first
stirred at room temperature for 15 min and then at reflux
temperature for 1 h. After cooling, the solvent was removed under
reduced pressure. The resulting material was chromatographed on
silica gel using hexanes/diethyl ether (7:3, v/v) as eluent.
Conclusions
In this study a peculiar tandem sequence of two pseudoperi-
cyclic events, [1,5]-X sigmatropic shift and further 6π-electro-
cyclic ring closure, has been unraveled both on experimental
and theoretical bases. Different X groups have been analyzed
when supported on a N-[2-(X-carbonyl)phenyl ketenimine
fragment. The relative migratory aptitude of such groups in the
sigmatropic step has been determined experimentally as being
RSe ≈ RS . R2N ≈ ArO. The migrating aptitudes of the
different X groups at the acyl substituent in the N-(2-X-
carbonyl)vinyl ketenimines considered in the theoretical study
is predicted to be PH2 > Cl > SH > NH2 > F > OH. The first
step of the transformation of the N-(2-X-carbonyl)vinyl keten-
imines into the final 2-X-4(3H)-pyridones, the sigmatropic shift,
is always rate-determining and may occur either in a concerted
or stepwise manner (via zwitterionic intermediates), depending
on the nature of the migrating group X. A pseudopericyclic
topology have been found for the transition states of some of
the [1,5]-X migration (X ) F, Cl, OH, SH), and those
corresponding to the second step, the 6π-electrocyclization of
the ketene intermediates to the pyridones. An alternative
cyclization mode of these ketenimines, the formation of 1,3-
oxazines via an initial 6π-electrocyclic ring closure, has been
also considered and calculated to be of pseudopericyclic nature.
The marked modal selectivity of the whole system found in
the experiments (exclusive formation of quinolin-4(3H)-ones
versus benzoxazines) could be rationalized on the basis of the
calculated energy barriers for the individual steps.
Some of the 2-arylselenoquinolin-4(3H)-ones 5 prepared could
not be obtained as crystalline solids. For these compounds, after
removing the chromatographic solvents under reduced pressure, the
resulting solids were triturated, dried at 50 °C under high vacuum
for 24 h, and used as such for characterization.
3,3-Diphenyl-2-phenylselenoquinolin-4(3H)-one 5m: yield 62%;
mp 182-184 °C (yellow prisms, Et2O); IR (Nujol) 1683 (vs), 1599
(w), 1580 (s), 1561 (vs), 1285 (m), 1154 (w), 1119 (w), 1068 (w),
891 (w), 777 (w), 767 (m), 751 (m), 700 (s), 657 (m), 633 (s) cm-1
;
1H NMR (CDCl3, 300 MHz) δ 7.17-7.20 (m, 2 H), 7.35 (s, 10
H), 7.40-7.43 (m, 3 H), 7.49 (td, 1 H, J ) 7.6, 1.4 Hz), 7.64-
7.67 (m, 2 H), 7.77 (dd, 1 H, J ) 7.9, 1.5 Hz); 13C NMR (CDCl3,
75 MHz) δ 72.1 (s), 121.8 (s), 126.5, 127.4, 127.7, 128.6, 128.7,
128.8, 129.0, 130.4, 135.8, 136.3, 137.5 (s), 146.2 (s), 178.9 (s),
197.1 (s); MS (EI, 70 eV) m/z (rel int) 453 (M+ for 80Se, 12), 451
(M+ for 78Se, 6), 296 (100). Anal. Calcd for C27H19NOSe
(452.41): C, 71.68; H, 4.23; N, 3.10. Found: C, 71.57; H, 4.24;
N, 3.01.
Experimental Section
Computational Methods. All calculations were carried out with
the Gaussian9837 and Gaussian0338 suite of programs. An intensive
characterization of the potential energy surface was done at the
HF/6-31G*39 theoretical level and then with the B3LYP40 functional
using the 6-31+G* basis set. All the reported stationary points were
Preparation of 2-Aryloxyquinolin-4(3H)-ones 5p-s and 2-Ami-
noquinolin-4(3H)-ones 5t-v. A solution of the corresponding
2-(triphenylphosphoranylideneamino)benzoate 3 (1 mmol) or the
2-(triphenylphosphoranylideneamino)benzamide 3 (1 mmol) in
anhydrous dichloromethane (5 mL) was introduced in a glass tube,
and a solution of diphenylketene (0.19 g, 1 mmol) or methylphe-
nylketene (0.13 g, 1 mmol) in the same solvent (2 mL) was added.
After stirring at room temperature for 15 min the solvent was
removed to dryness under reduced pressure. The glass tube was
sealed and the mixture containing the corresponding ketenimine 4
and triphenylphosphine oxide was heated at 230 °C for 1 h. After
cooling at room temperature, the crude mixture was dissolved in
dichloromethane (20 mL) and transferred to a round-bottom flask.
Finally, the solvent was removed under reduced pressure and the
resulting material was chromatographed on a silica gel column using
hexanes/diethyl ether as eluent.
(37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;
Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
(38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.: Piskorz,
P.; Komaromi, L.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M. P.; Gill, M. W.; Johnson,
B. G.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
Revision B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.
Some of the 2-aryloxyquinolin-4(3H)-ones and 2-aminoquinolin-
4(3H)-ones 5 prepared could not be obtained as crystalline solids.
(40) (a) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; Oxford University Press: New York, 1989. (b) Bartolotti, L.
J.; Fluchichk, K. In ReViews in Computational Chemistry; Lipkowitz, K.
B., Boyds, D. B., Eds.; VCH Publishers: New York, 1996; Vol. 7; pp 187-
216. (c) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100,
12974-12980. (d) Ziegler, T. Chem. ReV. 1991, 91, 651-667.
(41) (a) Redd, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys.
1985, 83, 735-746. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem.
ReV. 1988, 88, 899-926. (c) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem.
Soc. 1990, 112, 1434-1445.
(39) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. In Ab
Initio Molecular Orbital Theory; Wiley: New York, 1986, pp 71-82, and
references therein.
(42) Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112,
8251-8260.
8138 J. Org. Chem., Vol. 71, No. 21, 2006