Organometallics 2006, 25, 5201-5203
5201
Communications
Kinetic Resolution of Planar-Chiral Ferrocenes by
Molybdenum-Catalyzed Enantioselective Metathesis
Masamichi Ogasawara,*,† Susumu Watanabe,† Liyan Fan,† Kiyohiko Nakajima,‡ and
Tamotsu Takahashi*,†
Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido UniVersity, and
SORST, Japan Science and Technology Agency (JST), Kita-ku, Sapporo 001-0021, Japan, and Department
of Chemistry, Aichi UniVersity of Education, Igaya, Kariya, Aichi, 448-8542, Japan
ReceiVed September 11, 2006
Scheme 1. ARCM Kinetic Resolution of Planar-Chiral
Ferrocenes and Metathesis Catalysts.
Summary: Kinetic resolution of planar-chiral 1,1′-diallylfer-
rocene deriVatiVes was realized by molybdenum-catalyzed
asymmetric ring-closing metathesis with excellent enantiose-
lectiVity. This is the first example of highly enantioselectiVe
metal-catalyzed methods of preparing optically actiVe planar-
chiral metallocenes.
Planar-chiral ferrocenes are important chiral scaffolds in
organic and organometallic chemistry.1 Although such fer-
rocenes have been used in a variety of asymmetric reactions as
ligands2 or catalysts,3 their preparation in optically active form
is still a challenging problem. Most nonracemic planar-chiral
ferrocenes were obtained either by diastereoselective metalation
utilizing chiral ortho-directing groups4 or by optical resolution
of racemic compounds. Enantioselective lithiation of prochiral
ferrocenes by a stoichiometric chiral base has also shown fair
success.5 On the other hand, examples of catalytic asymmetric
synthesis of planar-chiral ferrocene derivatives are extremely
* To whom correspondence should be addressed. E-mail:
† Hokkaido University.
‡ Aichi University of Education.
(1) For reviews of planar-chiral ferrocenes, see: (a) Wagner, G.;
Herrmann, R. In Ferrocenes; Togni, A., Hayashi, T., Eds.; VCH: Weinheim,
1995; Chapter 4, p 173. (b) Togni, A. Angew. Chem., Int. Ed. Engl. 1996,
35, 1475. (c) Richards, C. J.; Locke, A. J. Tetrahedron: Asymmetry 1998,
9, 2377. See, also: (d) Halterman, R. L. Chem. ReV. 1992, 92, 965.
(2) (a) Hayashi, T. In Ferrocenes; Togni, A., Hayashi, T., Eds.; VCH:
Weinheim, 1995; Chapter 2, p 105. (b) Togni, A. In Metallocenes; Togni,
A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2, Chapter
11, p 685. (c) Colacot, T. J. Chem. ReV. 2003, 103, 3101. (d) Barbaro, P.;
Bianchini, C.; Giambastiani, G.; Parisel, S. L. Coord. Chem. ReV. 2004,
248, 2131.
rare.6-8 Apart from several reports on enzymatic resolution of
racemic ferrocenes,6 to the best of our knowledge, only two
examples of catalytic induction of ferrocenyl planar chirality
was reported so far with modest enantioselectivity.7,8
Richards9 and we10 recently reported preparation of [4]-
ferrocenophanes by Ru- or Mo-catalyzed metathesis reaction
of 1,1′-diallylferrocenes.11 Here, we report kinetic resolution
of planar-chiral 1,1′-diallylferrocene derivatives by Mo-catalyzed
asymmetric ring-closing metathesis (ARCM).12 The reaction
(3) (a) Butsugan, Y.; Araki, S.; Watanabe, M. In Ferrocenes; Togni,
A., Hayashi, T., Eds.; VCH: Weinheim, 1995; Chapter 3, p 143. (b) Fu,
G. C. Acc. Chem. Res. 2000, 33, 412. (c) Fu, G. C. Acc. Chem. Res. 2004,
37, 542.
(4) (a) Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P.; Ugi, I.
J. Am. Chem. Soc. 1970, 92, 5389. (b) Riant, O.; Samuel, O.; Kagan, H. B.
J. Am. Chem. Soc. 1993, 115, 5835. (c) Rebiere, F.; Riant, O.; Ricard, L;
Kagan, H. B. Angew. Chem., Int. Ed. Engl. 1993, 32, 568. (d) Richards, C.
J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. Synlett 1995, 74. (e)
Sammakia, T.; Latham, H. A.; Schaad, D. R. J. Org. Chem. 1995, 60, 10.
(f) Nishibayashi, Y.; Arikawa, Y.; Ohe, K.; Uemura, S. J. Org. Chem. 1996,
61, 1172. (g) Enders, D.; Peters, R.; Lochtman, R.; Raabe, G. Angew. Chem.,
Int. Ed. 1999, 38, 2421.
(5) (a) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N.
J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685. (b) Nishibayashi, Y.;
Arikawa, Y.; Ohe, K.; Uemura, S. J. Org. Chem. 1996, 61, 1172. (c) Laufer,
R. S.; Veith, U.; Taylor, N. J.; Snieckus, V. Org. Lett. 2000, 2, 629. (d)
Fukuda, T.; Imazato, K.; Iwao, M. Tetrahedron Lett. 2003, 44, 7503. (e)
Metallinos, C.; Szillat, H.; Taylor, N. J.; Snieckus, V. AdV. Synth. Catal.
2003, 345, 370.
(6) For representative examples, see: (a) Izumi, T.; Hino, T. J. Chem.
Technol. Biotechnol. 1992, 55, 325. (b) Lambusta, D.; Nicolosi, G.; Patti,
A.; Piattelli, M. Tetrahedron Lett. 1996, 37, 127. (c) Patti, A.; Lambusta,
D.; Piattelli, M.; Nocolosi, G. Tetrahedron: Asymmetry 1998, 9, 3073.
(7) Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. 1997, 36,
2456.
(8) Enantioselective lithiation of prochiral ferrocenes using alkyllithium
in conjunction with substoichiometric quantities of chiral diamines was
reported recently; see: Genet, C.; Canipa, S. J.; O’Brien, P.; Taylor, S. J.
Am. Chem. Soc. 2006, 128, 9337.
(9) Locke, A. J.; Jones, C.; Richards, C. J. J. Organomet. Chem. 2001,
637-639, 669.
(10) (a) Ogasawara, M.; Nagano, T.; Hayashi, T. J. Am. Chem. Soc. 2002,
124, 9068; J. Am. Chem. Soc. 2002, 124, 12626. (b) Ogasawara, M.; Nagano,
T.; Hayashi, T. Organometallics 2003, 22, 1174.
10.1021/om0608298 CCC: $33.50 © 2006 American Chemical Society
Publication on Web 09/26/2006