Published on Web 09/22/2006
Racemization in Prins Cyclization Reactions
Ramesh Jasti and Scott D. Rychnovsky*
Contribution from the Department of Chemistry, UniVersity of California, IrVine, 1102 Natural
Sciences II, IrVine, California 92697-2025
Received July 5, 2006; E-mail: srychnov@uci.edu
Abstract: Isotopic labeling experiments were performed to elucidate a new mechanism for racemization
in Prins cyclization reactions. The loss in optical activity for these reactions was shown to occur by 2-oxonia-
Cope rearrangements by way of a (Z)-oxocarbenium ion intermediate. Reaction conditions such as solvent,
temperature, and the nucleophile employed played a critical role in whether an erosion in enantiomeric
excess was observed. Additionally, certain structural features of Prins cyclization precursors were also
shown to be important for preserving optical purity in these reactions.
Introduction
we illustrate the existence of a third racemization pathway and
elucidate its mechanism.
The Prins cyclization1 is a very powerful synthetic transfor-
mation to rapidly assemble tetrahydropyran rings.2,3 Tetrahy-
dropyran rings are common structural motifs in numerous
biologically relevant molecules such as the phorboxazoles,4
spongistatins,5 and bryostatins.6 In fact, several groups have
taken advantage of this transformation in elegant approaches
to natural product targets.7 While this reaction has shown great
potential for organic synthesis, two deleterious racemization
pathways have been previously demonstrated.8 In this article,
As with any reaction creating new stereogenic centers, the
utility of the Prins cyclization is highly dependent on the degree
of stereoselectivity associated with the transformation. Several
factors are involved when rationalizing the stereochemical
outcome for Prins cyclization reactions. Ring closure of an
alkene onto an oxocarbenium ion through a chair transition state
leads to tetrahydropyranyl cation intermediate 29 (Figure 1). In
this ring-closure step, the C210 substituent lies in a favorable
equatorial position and the (E)-oxocarbenium ion geometry is
preferred11 over the (Z)-oxocarbenium ion geometry. Therefore,
chirality is transferred from C2 to the newly formed carbon-
carbon bond. The stereocenter formed at C4 is controlled by
the extensive delocalization of tetrahydropyranyl cation 2.9a
Favorable orbital overlap places the hydrogen at C4 in a
pseudoaxial geometry, and, therefore, nucleophilic attack occurs
(1) For reviews on the Prins cyclization, see: (a) Arundale, E.; Mikeska, L.
A. Chem. ReV. 1952, 52, 505-555. (b) Adams, D. R.; Bhatnagar, S. P.
Synthesis 1977, 661-672. (c) Snider, B. B. In The Prins Reaction and
Carbonyl Ene Reactions; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.;
Pergamon Press: New York, 1991; Vol. 2, pp 527-561. (d) Overman, L.
E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143-7157.
(2) For a recent review on the synthesis of tetrahydropyran rings, see: Santos,
S.; Clarke, P. A. Eur. J. Org. Chem. 2006, 2045-2053.
(3) For recent work on Prins cyclization methodology, see: (a) Miranda, P.
O.; Ramirez, M. A.; Martin, V. S.; Padron, J. I. Org. Lett. 2006, 8, 1633-
1636. (b) Lee, C.-H. A.; Loh, T.-P. Tetrahedron Lett. 2006, 47, 1641-
1644. (c) Overman, L. E.; Velthuisen, E. J. J. Org. Chem. 2006, 71, 1581-
1587. (d) Barry, C. S.; Bushby, N.; Charmant, J. P. H.; Elsworth, J. D.;
Harding, J. R.; Willis, C. L. Chem. Commun. 2005, 40, 5097-5099. (e)
Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005,
127, 9939-9945. (f) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J.
Am. Chem Soc. 2005, 127, 16044-16045. (g) Yadav, K. V.; Kumar, N.
V. J. Am. Chem. Soc. 2004, 126, 8652-8653. (h) Cossey, K. N.; Funk, R.
L. J. Am. Chem. Soc. 2004, 126, 12216-12217. (i) Dalgard, J. E.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2004, 126, 15662-15663. (j) Hart,
D. J.; Bennet, C. E. Org. Lett. 2003, 5, 1499-1502. (k) Barry, C. S. J.;
Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.; Parker, G. D.;
Willis, C. L. Org. Lett. 2003, 5, 2429-2432. (l) Miranda, P. O.; Diaz, D.
D.; Padron, J. I.; Bermejo, J.; Martin, V. S. Org. Lett. 2003, 5, 1979-
1982.
(6) (a) Pettit, G. R.; Herald, C. L.; Doubek, D. L.; Herald, D. L.; Arnold, E.;
Clardy, J. J. Am. Chem. Soc. 1982, 104, 6846-6848. (b) Pettit, G. R. J.
Nat. Prod. 1996, 59, 812-821. (c) Kraft, A. S.; Woodley, S.; Pettit, G. R.;
Gao, F.; Coll, J. C.; Wagner, F. Cancer Chemother. Pharmacol. 1996, 37,
271-278. (d) Szallasi, Z.; Du, L.; Levine, R.; Lewin, N. E.; Nguyen, P.
N.; Williams, M. D.; Pettit, G. R.; Blumberg, P. M. Cancer Res. 1996, 56,
2105-2111. (e) Kraft, A. S.; Smith, J. B.; Berkow, R. L. Proc. Natl. Acad.
Sci. U.S.A. 1986, 83, 1334-1338.
(7) (a) Barry, C. S.; Bushby, N.; Charmant, J. P. H.; Elsworth, J. D.; Harding,
J. R.; Willis, C. L. Chem. Commun. 2005, 5097-5099. (b) Aubele, D. L.;
Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485-3488.
(c) Bahnck, K. B.; Rychnovsky, S. D. Chem. Commun. 2006, 22, 2388-
2390. (d) Tian, X.; Jaber, J. J.; Rychnovsky, S. D. J. Org. Chem. 2006, 71,
3176-3183 (e) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126,
12216-12217. (f) Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J.
Am. Chem. Soc. 2003, 125, 6650-6652.
(4) (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126-
8131. (b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J.
Am. Chem. Soc. 1996, 118, 9422-9423. (c) Molinski, T. F. Tetrahedron
Lett. 1996, 37, 7879-7880.
(8) (a) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L.
Org. Lett. 2002, 4, 577-580. (b) Marumoto, S.; Jaber, J. J.; Vitale, J. P.;
Rychnovsky, S. D. Org. Lett. 2002, 4, 3919-3922.
(9) (a) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002,
124, 4960-4961. (b) Jasti, R.; Rychnovsky, S. D. Org. Lett. 2006, 8, 2175-
2178.
(5) (a) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R. J.
Chem. Soc., Chem. Commun. 1993, 1166-1168. (b) Pettit, G. R.; Herald,
C. L.; Cichacz, Z. A.; Gao, F.; Schmidt, J. M.; Boyd, M. R.; Christie, N.
D.; Boettner, F. E. J. Chem. Soc., Chem. Commun. 1993, 1805-1807. (c)
Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.; Schmidt,
J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302-1304. (d) Kobayashi,
M.; Aoki, S.; Sakai, H.; Kihara, N.; Sasaki, T.; Kitagawa, I. Chem. Pharm.
Bull. 1993, 41, 989. (e) Kobayashi, M.; Aoki, S.; Sakai, H.; Kawazoe, K.;
Kihara, N.; Sasaki, T.; Kitagawa, I. Tetrahedron Lett. 1993, 34, 2795-
2798. (f) Fusetani, N.; Shimoda, K.; Matsunaga, S. J. Am. Chem. Soc. 1993,
115, 3977-3981.
(10) The numbering system is as follows:
(11) Cremer, D.; Gauss, J.; Childs, R. F.; Blackburn, C. J. Am. Chem. Soc.
1985, 107, 2435-2441.
9
13640
J. AM. CHEM. SOC. 2006, 128, 13640-13648
10.1021/ja064783l CCC: $33.50 © 2006 American Chemical Society