478
S. Hanessian, G. J. Reddy
LETTER
(4) (a) Takaoka, D.; Watanabe, K.; Hiroi, M. Bull. Chem. Soc.
Jpn. 1976, 49, 3564. (b) Lopes, N. P.; Blumenthal, E. E. A.;
Cavalheiro, A. J.; Kato, M. J.; Yoshida, M. Phytochemistry
1996, 43, 1089. (c) Parmar, V. S.; Jain, S. C.; Gupta, S.;
Talwar, S.; Rajwanshi, V. K.; Kumar, R.; Azim, A.;
Malhotra, S.; Kumar, N.; Jain, R.; Sharma, N. K.; Tyagi, O.
M.; Lawrie, S. J.; Errington, W.; Howarth, O. W.; Olsen, C.
E.; Singh, S. K.; Wengel, J. Phytochemistry 1998, 49, 1069.
(5) Vieira, L. M.; Kijjoa, A.; Silva, A. H. S.; Mondranondra, I.-
O.; Herz, W. Phytochemistry 1998, 48, 1079.
Deprotection of the ester and benzyl ether groups gave 17
which was O-methylated to (–)-saucernetin (5).22 Our
synthesis confirms the proposed structure (Figure 1),
however, the reported6c sign of optical rotation should be
reversed.
O
O
(6) (a) Rao, K. V.; Alvarez, F. M. Tetrahedron Lett. 1983, 24,
4947. (b) Rao, K. V.; Oruganty, R. S. J. Liq. Chromatogr.
Relat. Technol. 1997, 20, 3121. (c) Hwang, B. Y.; Lee, J.-
H.; Nam, J. B.; Hong, Y.-S.; Lee, J. J. Phytochemistry 2003,
64, 765.
(7) (a) Hossain, C. F.; Kim, Y.-P.; Baerson, S. R.; Zhang, L.;
Bruick, R. K.; Mohammed, K. A.; Agarwal, A. K.; Nagle, D.
G.; Zhou, Y.-D. Biochem. Biophys. Res. Commun. 2005,
333, 1026. (b) Giang, P. M.; Son, P. T.; Matsunami, K.;
Otsuka, H. Chem. Pharm. Bull. 2006, 54, 383.
H
H
Me
Me
Ar
H
H
H
H
Me
Me
Ar
MOMO
MOMO
B
A
less favored (14)
favored (11)
Figure 3 Favored (A) and less favored (B) transition states of
quinonoid oxonium ions.
(8) Konishi, T.; Konoshima, T.; Daikonya, A.; Kitanaka, S.
Chem. Pharm. Bull. 2005, 53, 121.
(9) Esumi, T.; Hojyo, D.; Zhai, H.; Fukuyama, Y. Tetrahedron
Lett. 2006, 47, 3979.
(10) Fonseca, S. F.; Barata, L. E. S.; Ruveda, E. A. Can. J. Chem.
1979, 57, 441.
In conclusion, we have described a general method for the
intramolecular cyclization of suitably disposed and func-
tionally differentiated 1,4-benzylic alcohols as a 1,4-diar-
yl-2,4-dimethyl acyclic framework, to the corresponding
tetrasubstituted tetrahydrofurans. A p-O-allyl ether group
assists in the facile departure of a benzylic mesylate
through the formation of quinonoid oxonium ion interme-
diate which in turn is attacked in an intramolecular face
selective fashion by the ether oxygen of a MOM ether.
When an ester group (p-NB) replaces the allyl group, tet-
rahydrofuran formation proceeds in an SN2-type manner.
Thus, by selecting the aromatic substituents, and the con-
figuration of the OMOM-substituted benzylic carbon, it is
possible to access a diverse set of configurationally dis-
tinct 2,5-diaryl-3,4-dimethyl-substituted tetrahydrofuran
lignans of natural origins, as well as their enantiomers.
(11) (a) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J.
Am. Chem. Soc. 2005, 127, 12808. (b) Jahn, U.; Rudakov,
D. Org. Lett. 2006, 8, 4481; and references cited therein.
(12) (a) Biftu, T.; Gamble, N. F.; Doebber, T.; Hwang, S. B.;
Shen, T. Y.; Snyder, J.; Springer, J. P.; Stevenson, R. J. Med.
Chem. 1986, 29, 1917. (b) Stevenson, R.; Williams, J. R.
Tetrahedron 1997, 33, 285.
(13) Moinuddin, S. G. A.; Hishiyama, S.; Cho, M.-H.; Davin, L.
B.; Lewis, N. G. Org. Biomol. Chem. 2003, 1, 2307.
(14) Hanessian, S.; Reddy, G. J.; Chahal, N. Org. Lett. 2006, 8,
5477.
(15) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.;
Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392.
(16) (a) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103,
5454. (b) See also: Llu, C.; Burnell, D. J. Tetrahedron Lett.
1997, 38, 6573.
Acknowledgment
(17) Data of (+)-Fragransin A2 (1).
Mp 198–200 °C (Lit.3a 200–202 °C); [a]D +77.7 (c 1.0,
CHCl3) [Lit.3a +79.0 (c 0.84, CHCl3)]. IR (thin film): 3428,
2957, 2926, 1515, 1272, 1034 cm–1. 1H NMR (400 MHz,
CDCl3): d = 6.85–6.98 (m, 6 H), 5.58 (s, 2 H), 4.65 (d, 2 H,
J = 9.2 Hz), 3.94 (s, 6 H), 1.76–1.82 (m, 2 H), 1.06 (d, 6 H,
J = 6.0 Hz) ppm. 13C NMR (400 MHz, CDCl3): d = 146.2,
144.7, 134.0, 119.0, 113.6, 108.0, 88.0, 55.6, 50.6, 13.47
ppm. HRMS: m/z calcd for C20H25O5 [M + H]+: 345.1698;
found: 345.1696.
We thank NSERC for financial assistance, and Navjot Chahal for
assisting in the preparation of some intermediate compounds. We
also thank Michel Simard for X-ray crystal structure analysis.
References and Notes
(1) Ward, R. S. Nat. Prod. Rep. 1995, 12, 183; and earlier
reviews in this series.
(2) (a) Saleem, M.; Kim, H. J.; Ali, M. S.; Lee, Y. S. Nat. Prod.
Rep. 2005, 22, 696. See also: (b) Li, G.; Ju, H. K.; Chang, H.
W.; Jahng, Y.; Lee, S.-H.; Son, J.-K. Biol. Pharm. Bull.
2003, 26, 1039. (c) Lopes, N. P.; Kato, M. J.; Yoshida, M.
Phytochemistry 1999, 51, 29. (d) Kraft, C.; Jenett-Siems,
K.; Kohler, I.; Tofern-Reblin, B.; Siems, K.; Bienzle, U.;
Eich, E. Phytochemistry 2002, 60, 167. (e) Zhai, H.; Inoue,
T.; Moriyama, M.; Esumi, T.; Mitsumoto, Y.; Fukuyama, Y.
Biol. Pharm. Bull. 2005, 28, 289. (f) Zhai, H.; Nakatsukasa,
M.; Mitsumoto, Y.; Fukuyama, Y. Planta Med. 2004, 70,
598.
(18) Data of (+)-Galbelgin (2).
Mp 140–142 °C (Lit.4c 141–142 °C); [a]D +83.4 (c 0.47,
CHCl3) [Lit.4c –85.1 (c 0.047, CHCl3) for (–)-galbelgin]. IR
(thin film): 2957, 2929, 1515, 1263, 1028 cm–1. 1H NMR
(400 MHz, CDCl3): d = 6.84–7.01 (m, 6 H), 4.68 (d, 2 H,
J = 9.2 Hz), 3.93 (s, 6 H), 3.90 (s, 6 H), 1.78–1.87 (m, 2 H),
1.07 (d, 6 H, J = 5.6 Hz) ppm. 13C NMR (400 MHz, CDCl3):
d = 148.6, 148.0, 134.5, 118.2, 110.4, 108.7, 88.0, 55.54,
55.52, 50.6, 13.5 ppm. HRMS: m/z calcd for C22H29O5 [M +
H]+: 373.2009; found: 373.2014.
(19) Data of (+)-Talaumidin (3).
(3) (a) Hattori, M.; Hada, S.; Kawata, Y.; Tezuka, Y.; Kikuchi,
T.; Namba, T. Chem. Pharm. Bull. 1987, 35, 3315.
(b) Kasahara, H.; Miyazawa, M.; Kameoka, H.
Phytochemistry 1996, 43, 111.
Colorless oil; [a]D +76.0 (c 0.5, CHCl3) [Lit.9 –81.8 (c 0.43,
CHCl3) for (–)-talaumidin]. 1H NMR (400 MHz, CDCl3):
d = 6.77–6.97 (m, 6 H), 5.96 (s, 2 H), 5.57 (br s, 1 H), 4.63
(d, 2 H, J = 8.8 Hz), 3.93 (s, 6 H), 1.74–1.82 (m, 2 H), 1.05
Synlett 2007, No. 3, 475–479 © Thieme Stuttgart · New York