FULL PAPER
[10]
[11]
[12]
a) C. Q. Nguyen, A. Adeogun, M. Afzaal, M. A. Malik, P.
O’Brien, Chem. Commun. 2006, 2182; b) M. A. Malik, M.
Afzaal, P. O’Brien, Chem. Rev. 2010, 110, 4417.
R. Cea-Olivares, V. Garcia-Montalvo, J. Novosad, J. D. Wool-
lins, R. A. Toscano, G. Espinosa-Perez, Chem. Ber. 1996, 129,
919.
Table 1. CCDC-858704 (for 3), -858705 (for 4), and -858706 (for 6)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic
data_request/cif.
Data
Centre
via
www.ccdc.cam.ac.uk/
Supporting Information (see footnote on the first page of this arti-
a) H. Hertel, W. Kuchen, Chem. Ber. 1971, 104, 1740; b) V.
Béreau, J. A. Ibers, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 2000, 56, 584; c) C. W. Liu, C.-S. Fang, C.-W. Chu-
ang, T. S. Lobana, B.-J. Liaw, J.-C. Wang, J. Organomet. Chem.
2007, 692, 1726.
cle): 31P NMR spectra (S1–S5).
Acknowledgments
As the softness parameter (En϶) depends on the dielectric con-
stant (ε) of the solvent used, it was evaluated based on the
Klopman equation in the solvent in which the reaction was
performed; En϶(Fe3+, acetone) = 1.11 eV; En϶(V3+, EtOH) =
2.70 eV; En϶(VO2+, iPrOH) = 2.01 eV; En϶(Ga3+, DCM) =
[13]
We thank the National Science Council of Taiwan (grant NSC 100-
2923-M259-001-MY3) and the Russian Foundation for Basic Re-
search (joint grant Russia-Taiwan 11-03-92003-HHC_a) for finan-
cial support.
϶
–1.54 eV; En϶(In3+) = –2.08 eV (DCM), –25.60 (toluene); En
(P=Se, DCM) ≈ –4.11 eV; Em϶(P–Se–) ≈ –6.93 eV; Em϶(HSe–,
DCM) ≈ –7.19 eV. Reduction and oxidation potential data
adopted from: C. E. Housecroft, A. G. Sharpe, Inorganic
Chemistry, 2nd ed., Pearson Education Limted, Harlow, 2005.
[1] a) J. Michalski, C. Krawiecki, Rocz. Chem. 1957, 31, 715; b) C.
Krawiecki, J. Michalski, R. A. Y. Jones, A. R. Katritzky, Rocz.
Chem. 1969, 43, 869; c) W. J. Stec, B. Uznanski, J. Michalski,
Phosphorus Relat. Group V Elem. 1973, 2, 273.
[2] a) J. Michalski, Ann. N. Y. Acad. Sci. 1972, 192, 90; b) F. R.
Hartley in The Chemistry of Organophosphorus Compounds:
Phosphine oxides, sulfides, selenides and tellurides (Ed.: F. R.
Hartley), Wiley-VCH, Weinheim, 1992; c) M. Kullberg, M.
Bollmark, J. Stawinski, Collect. Czech. Chem. Commun. 2006,
71, 820.
[3] a) C. J. Wilds, R. Pattanayek, C. L. Pan, Z. Wawrzak, M. Egli,
J. Am. Chem. Soc. 2002, 124, 14910; b) B. Nawrot, K. Widera,
M. Wojcik, B. Rebowska, G. Nowak, W. J. Stec, FEBS J. 2007,
274, 1062; c) A. Bartoszewicz, M. Kalek, J. Stawinski, J. Org.
Chem. 2008, 73, 5029.
[4] M. Kullberg, M. Bollmark, J. Stawinski, Collect. Czech. Chem.
Commun. 2006, 71, 832.
r
r
r
E0 (Fe3+/Fe2+) = +0.77 V; E0 (VO2+/V3+) = +0.34 V; E0 (V3+
/
r
r
V2+) = –0.26 V; E0 (Ga3+/Ga+) = –0.75 V; E0 (In3+/In+) =
–0.44 V; E0°(10/+) = 0.81 V (from ref.[7a]); E0°(dsep0/–) = 0.24 V
(from ref.[23]).
[14]
[15]
Representative examples: a) H. Nishiyama, K. Itagaki, N.
Osaka, K. Itoh, Tetrahedron Lett. 1982, 23, 4103; b) S. Piettre,
C. De Cock, R. Merenyi, H. G. Viehe, Tetrahedron 1987, 43,
4309; c) M. Yoshimatsu, T. Sato, H. Shimizu, M. Hori, T. Ka-
taoka, J. Org. Chem. 1994, 59, 1011; d) M. Tingoli, L. Tes-
taferri, A. Temperini, M. Tiecco, J. Org. Chem. 1996, 61, 7085.
Representative examples: a) S. Husebye, Acta Chem. Scand.
1966, 20, 51; b) S. Husebye, Acta Chem. Scand. 1966, 20, 2007;
c) M. J. Potrzebowski, G. Grossmann, J. Błaszczyk, M. W. Wie-
czorek, J. Sieler, P. Knopik, H. Komber, Inorg. Chem. 1994, 33,
4688; d) M. J. Potrzebowski, J. Błaszczyk, M. W. Wieczorek, J.
Klinowski, J. Phys. Chem. A 1997, 101, 8077; e) R. Cea-Oliv-
ares, M. Moya-Cabrera, V. García-Montalvo, R. Castro-
Blanco, R. A. Toscano, S. Hernández-Ortega, Dalton Trans.
2005, 1017; f) S. Parveen, P. Kilian, A. M. Z. Slawin, J. D.
Woollins, Dalton Trans. 2006, 2586; g) W. Shi, L. Zhang, M.
Shafaei-Fallah, A. Rothenberger, Z. Anorg. Allg. Chem. 2007,
633, 440; h) G. Hua, Y. Li, A. M. Z. Slawin, J. D. Woollins,
Angew. Chem. 2008, 120, 2899; Angew. Chem. Int. Ed. 2008,
47, 2857.
Diselenophosph(in)ates were usually oxidized by one-electron
oxidation with iodine: a) P. M. Briggs Piccoli, K. D. Abney,
J. D. Schoonover, P. K. Dorhout, Inorg. Chem. 2001, 40, 4871;
b) C. G. Canlas, M. G. Kanatzidis, D. P. Weliky, Inorg. Chem.
2003, 42, 3399; c) M. A. Gave, C. G. Canlas, I. Chung, R. G.
Iyer, M. G. Kanatzidis, D. P. Weliky, J. Solid State Chem. 2007,
180, 2877; d) C. Rotter, M. Schuster, M. Kidik, O. Schön, T. M.
Klapötke, K. Karaghiosoff, Inorg. Chem. 2008, 47, 1663; e)
A. V. Artem’ev, S. F. Malysheva, B. G. Sukhov, N. A. Belogor-
lova, Y. V. Gatilov, V. I. Mamatyuk, N. K. Gusarova, Mende-
leev Commun. 2012, 22, 18.
Lewis acids in organic synthesis (Ed.: H. Yamamoto), Wiley-
VCH, Weinheim, Germany, 2000, vol. 2, chapter 14. At the
same time acetylferrocenium tetrafluoroborate is a 17 electron,
non-Lewis acidic metallocene: S. P. Bew, M. R. Cheesman, S. V.
Sharma, Chem. Commun. 2008, 5731.
a) G. R. Willey, J. R. Barras, M. D. Rudd, M. G. B. Drew, J.
Chem. Soc., Dalton Trans. 1994, 3025; b) F. N. Blanco, L. E.
Hagopian, W. R. McNamara, J. A. Golen, A. L. Rheingold, C.
Nataro, Organometallics 2006, 25, 4292.
J. Ruiz, R. Araúz, M. Ceroni, M. Vivanco, J. F. Van der Ma-
elen, S. G.-Granda, Organometallics 2010, 29, 3058.
Although the real HOMO magnitudes for neutral 1 and
charged dsep are still unknown, for a rough comparison we
assume these values are an average of the reported values for
[5] L. Flohe in Selenium and Tellurium Chemistry (Eds.: J. D.
Woollins, R. S. Laitinen), Springer-Verlag, Berlin, Heidelberg,
2011, chapters 11 and 12.
[6] a) C. W. Liu, J.-M. Chen, B. K. Santra, S.-Y. Wen, B.-J. Liaw,
J.-C. Wang, Inorg. Chem. 2006, 45, 8820; b) L.-S. Chiou, C.-S.
Fang, B. Sarkar, L.-K. Liu, M. K. Leong, C. W. Liu, Organo-
metallics 2009, 28, 4958; c) C. W. Liu, J. D. Woollins in Sele-
nium and Tellurium Chemistry (Eds.: J. D. Woollins, R. S. Lait-
inen), Springer-Verlag, Berlin, Heidelberg, 2011, chapter 13.
[7] a) B. Sarkar, S.-Y. Wen, J.-H. Wang, L.-S. Chiou, B. K. Santra,
P.-K. Liao, J.-C. Wang, C. W. Liu, Inorg. Chem. 2009, 48, 5129;
b) B. K. Santra, C.-L. Chen, B. Sarkar, C. W. Liu, Dalton
Trans. 2008, 2270.
[8] Group 13 trivalent chlorides are strong LAs owing to the avail-
ability of an unoccupied p orbital and the strong electronega-
tivity of the halogen. a) K. A. Grencewicz, D. W. Ball, J. Phys.
Chem. 1996, 100, 5672; b) A. Ogawa, H. Fujimoto, Inorg.
Chem. 2002, 41, 4888. It was shown that the LA strengths of
GaCl3 and AlCl3 are similar; however, InCl3 is a weaker LA
than GaCl3: c) H. Yamamoto, K. Ishihara in Acid Catalysis in
Modern Organic Synthesis (Eds.: H. Yamamoto, K. Ishihara),
Wiley-VCH, Weinheim, Germany, 2008, vol. 1, chapters 7 and
8; d) C. G. Frost, J. P. Hartley, Mini-Rev. Org. Chem. 2004, 1,
1; e) S. Araki, T. Hirashita in Main Group Metals in Organic
Synthesis (Eds.: H. Yamamoto, K. Oshima), Wiley-VCH,
Weinheim, Germany, 2004, chapter 8; f) The Group 13 Metals
Aluminium, Gallium, Indium and Thallium: Chemical Patterns
and Peculiarities (Eds.: S. Aldridge, A. J. Downs), John Wiley &
Sons, UK, 2011; g) Okamoto, M. Watanabe, M. Murai, R.
Hatano, K. Ohe, Chem. Commun. 2012, 48, 3127.
[16]
[17]
[18]
[19]
[20]
[9] a) V. Krishnan, R. A. Zingaro, Inorg. Chem. 1969, 8, 2337; b)
J.-M. Chen, B. K. Santra, C. W. Liu, Inorg. Chem. Commun.
2004, 7, 1103; c) R. P. Davies, C. V. Francis, A. P. S. Jurd, M. G.
Martinelli, A. J. P. White, D. J. Williams, Inorg. Chem. 2004, 43,
4802.
Eur. J. Inorg. Chem. 2013, 2083–2092
2091
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim