Continuing our interest in the application of palladium-
catalyzed C-N and C-O bond forming reactions in tandem
processes for heterocycle synthesis,9 we speculated that the
combination of an N-alkyl urea with an o-halo benzoate
would provide a direct route to monoalkylated quinazo-
linediones (Scheme 1).10,11 The heterocycle would be con-
Table 1. Reaction Optimizationa
entry
ligand
base
time (h)
product
yieldb (%)
1
2
3
4
5
6
7c
9
9
NaOtBu
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
24
24
48
24
24
24
24
7
8
8
21
43
89
0
Scheme 1. Tandem Urea Arylation-Ester Amidation Route to
9
Quinazolinediones
10
11
12
9
0
0
79
8
a Reaction conditions; substrate (1.0 equiv), urea (1.2 equiv), Pd2(dba)3
(0.5 mol %), ligand (1 mol %), base (2.0 equiv). b Isolated yields. c 5.0
mol % Pd2(dba)3, 10.0 mol % ligand.
structed by using a tandem reaction sequence involving Pd-
catalyzed urea arylation and base-promoted ester amidation.
The utility of the process would be dependent on achieving
selectivity for either the 3-N-alkyl (4) or 1-N-alkyl (5)
regioisomer. We anticipated that regiocontrol would be
possible by dictating the order of the two bond-forming steps,
and by the regioselectivity of the arylation reaction.
Although palladium-catalyzed N-arylation is now a routine
operation in synthetic chemistry,12 there are only a handful
of reports of the use of urea nucleophiles.13,14 To establish
that the proposed route was feasible we chose to ignore the
issue of regioselectivity and to focus on the coupling of
o-bromo benzoate 6 and urea (Table 1). On the basis of
literature precedent we selected Xantphos15 as the initial
ligand for study;13 reaction between benzoate 6 and urea
employing NaOtBu as base delivered only amide 7 in 21%
yield (entry 1). However, the use of the weaker base Cs2-
CO3 provided the parent quinazolinedione 8 in 43% yield
(entry 2). Simply extending the reaction time to 48 h
increased the yield of 8 to 89% (entry 3). In an effort to
reduce the reaction time we briefly explored the use of the
structurally similar ligand DPEphos, and the two biphenyl
ligands 1116 and 12;17 however, even when Cs2CO3 was used
as base, no reaction was observed (entries 4-6). Finally,
the simplest method to reduce the reaction times was to
increase the catalyst loading from 1 mol % palladium to 10
mol % (entry 7).
With conditions for the synthesis of the parent heterocycle
available, we next explored the scope of the urea coupling
partner and the regioselectivity of the process (Table 2). The
Table 2. Scope of the Urea Componenta
(9) (a) Willis, M. C.; Taylor, D.; Gillmore, A. D. Org. Lett. 2004, 6,
4755. (b) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int.
Ed. 2005, 44, 403. (c) Willis, M. C.; Brace, G. N.; Findlay, T. J. K.; Holmes,
I. P. AdV. Synth. Catal. 2006, 348, 851.
(10) For the use of o-halobenzaldehydes as substrates for a Pd-catalyzed
amination based route to naphthyridinones, see: Manley, P. J.; Bilodeau,
M. T. Org. Lett. 2004, 6, 2433.
entry
R1, R2
time (h)
yield (%)b
1
2
3
4
5
6
7
8
Me, Me
H, Me
H, Bu
H, Oct
H, Cy
H, allyl
H, Bn
H, Ph
24
48
48
48
48
48
48
48
90
99
95
84
97
62
95
63
(11) For a Pd-catalyzed cyclocarbonylation route to quinazolinones,
see: Larksarp, C.; Alper, H. J. Org. Chem. 2000, 54, 2773.
(12) General Pd-catalyzed C-N arylation reviews: (a) Hartwig, J. F. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E., Ed.; Wiley-Interscience: New York, 2002; Vol. 1, p 1051. (b) Muci,
A. R.: Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (c) Prim, D.;
Campagne, J.-M.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58, 2041.
(13) (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
(b) Artamkina, G. A.; Sergeev, A. G.; Beletskaya, I. P. Tetrahedron Lett.
2001, 42, 4381. (c) Sergeev, A. G.; Artamkina, G. A.; Beletskaya, I. P.
Tetrahedron Lett. 2003, 44, 4719. (d) Abad, A.; Agullo´, C.; Cun˜at, A. C.;
Vilanova, C. Synthesis 2005, 915. (e) Artamkina, G. A.; Sergeev, A. G.;
Stern, M. M.; Beletskaya, I. P. Synlett 2006, 235.
(14) For the use of Pd-catalyzed intramolecular urea arylation in the
synthesis of dihydroquinazolinones, see; (a) Ferraccioli, R.; Carenzi, D.
Synthesis 2003, 1383. (b) Schlapbach, A.; Heng, R.; Di Padova, F. Bioorg.
Med. Chem. Lett. 2004, 14, 357. Also see: (c) Bened´ı, C.; Bravo, F.; Uriz,
P.; Ferna´ndez, E.; Claver, C.; Castillo´n, S. Tetrahedron Lett. 2003, 44, 6073.
(15) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14,
3081.
a Reaction conditions; substrate (1.0 equiv), urea (1.2 equiv), Pd2(dba)3
(2.5 mol %), ligand (5.0 mol %), base (2.0 equiv). b Isolated yields of pure
regioisomer.
use of N,N′-dimethylurea led to a faster reaction with the
desired product obtained in 90% yield after 24 h (entry 1).
(16) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 43, 1871.
(17) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
5090
Org. Lett., Vol. 8, No. 22, 2006