3 (a) L. E. Overman, J. Am. Chem. Soc., 1974, 96, 597; (b) L. E. Overman,
J. Am. Chem. Soc., 1976, 98, 2901.
4 R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 1965, 87, 2511.
5 (a) T. Ikariya, Y. Ishikawa, K. Hirai and S. Yoshikawa, Chem. Lett.,
1982, 1815; (b) L. E. Overman, Angew. Chem., Int. Ed. Engl., 1984, 23,
579; (c) T. G. Schenck and B. Bosnich, J. Am. Chem. Soc., 1985, 107,
2058.
6 For recent examples see: (a) H. Ovaa, J. D. C. Code´e, B. Lastdrager,
H. S. Overkleeft, G. A. van der Marel and J. H. van Boom, Tetrahedron
Lett., 1999, 40, 5063; (b) G. Mehta, S. Lakshminath and P. Talukdar,
Tetrahedron Lett., 2002, 43, 335; (c) M. Reilly, D. R. Anthony and C.
Gallagher, Tetrahedron Lett., 2003, 44, 2927; (d) A. E. Lurain and P. J.
Walsh, J. Am. Chem. Soc., 2003, 125, 10677; (e) A. G. Jamieson, A.
Sutherland and C. L. Willis, Org. Biomol. Chem., 2004, 2, 808; (f) S.
Kim, T. Lee, E. Lee, J. Lee, G.-J. Fan, S. K. Lee and D. Kim, J. Org.
Chem., 2004, 69, 3144; (g) K. N. Fanning, A. G. Jamieson and A.
Sutherland, Org. Biomol. Chem., 2005, 3, 3749.
7 (a) M. Calter, T. K. Hollis, L. E. Overman, J. Ziller and G. G. Zipp,
J. Org. Chem., 1997, 62, 1449; (b) T. K. Hollis and L. E. Overman,
Tetrahedron Lett., 1997, 38, 8837; (c) Y. Uozumi, K. Kato and T.
Hayashi, Tetrahedron: Asymmetry, 1998, 9, 1065; (d) J. Kang, T. H.
Kim, K. H. Yew and W. K. Lee, Tetrahedron: Asymmetry, 2003, 14,
415; (e) L. E. Overman, C. E. Owen, M. M. Pavan and C. J. Richards,
Org. Lett., 2003, 5, 1809; (f) C. E. Anderson and L. E. Overman, J. Am.
Chem. Soc., 2003, 125, 12412; (g) S. F. Kirsch, L. E. Overman and
M. P. Watson, J. Org. Chem., 2004, 69, 8101; (h) C. E. Anderson, Y.
Donde, C. J. Douglas and L. E. Overman, J. Org. Chem., 2005, 70,
648.
Scheme 5 Reagents and conditions: (i) RuCl3·xH2O, NaIO4, H2O, CCl4,
MeCN, R = H (65%), Me (62%), Bn (82%); (ii) 6 M HCl, D, R = H (74%),
Me (55%), Bn (55%).
allylic amide 22a was converted to the novel benzyl derived c-
hydroxy-a-amino acid 26 (Scheme 5).
In conclusion, we have demonstrated that while the aza-
Claisen rearrangement of allylic acetimidates derived from d,e-
disubstituted allylic alcohols in THF is controlled solely using
1,3-allylic strain the use of a non-coordinating solvent results in
the switching on of a substrate directing effect which substantially
enhances the stereochemical outcome. Studies are currently un-
derway on the modelling of these reaction pathways and further
applications of the allylic amides.
8 (a) A. G. Jamieson and A. Sutherland, Org. Biomol. Chem., 2005, 3,
735; (b) A. G. Jamieson and A. Sutherland, Org. Biomol. Chem., 2006,
4, 2932.
The authors wish to thank EPSRC (studentship to MDS) and
the University of Glasgow for funding.
9 (a) G. Frater, Helv. Chim. Acta, 1979, 62, 2825; (b) D. Seebach and D.
Wasmuth, Helv. Chim. Acta, 1980, 63, 197.
References
10 R. E. Ireland and D. W. Norbeck, J. Org. Chem., 1985, 50, 2198.
11 The general effects of the 1,3-allylic strain in controlling stereochem-
istry have been reviewed: R. W. Hoffmann, Chem. Rev., 1989, 89, 1841.
12 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org.
Chem., 1981, 46, 3936.
1 (a) F. E. Ziegler, Acc. Chem. Res., 1977, 10, 227; (b) R. P. Lutz,
Chem. Rev., 1984, 84, 205; (c) D. Enders, M. Knopp and R. Schiffers,
Tetrahedron: Asymmetry, 1996, 7, 1847; (d) H. Ito and T. Taguchi,
Chem. Soc. Rev., 1999, 28, 43; (e) A. M. Mart´ın Castro, Chem. Rev.,
2004, 104, 2939; (f) K. N. Fanning, A. G. Jamieson and A. Sutherland,
Curr. Org. Chem., 2006, 10, 1007.
13 J. Ariza, J. Font and R. M. Ortuno, Tetrahedron, 1990, 46, 1931 and
references therein.
14 R. F. Raffauf, T. M. Zennie, K. D. Onan and P. W. Le Quesne, J. Org.
Chem., 1984, 49, 2714.
2 L. E. Overman and N. E. Carpenter, Org. React., 2005, 66, 1 and
references therein.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 3889–3891 | 3891
©