G. F. de Sousa et al. / Journal of Molecular Structure 981 (2010) 46–53
53
harmonic frequencies. The calculated general average scaling fac-
Acknowledgements
tors were 0.9866 (3–21G(ꢀ)) and 0.9929 (DZVP), when using all
75 frequencies, and 0.9587 (3–21G(ꢀ)) and 0.9967 (DZVP) for
Sn(IV) specific frequencies. The larger difference between 3 and
21G(ꢀ) general and specific factors is due to it’s poorer perfor-
mance on Sn(IV) specific frequencies.
The authors are grateful to CNPq, FAPESP and FINEP (CT INFRA
0970/01) for financial support. GFS also gratefully acknowledges
the financial support of the CNPq (Edital Universal-2007, Processo
307412/2008-3).
References
4. Conclusions
[1] O.E. Offiong, S. Martelli, Trans. Met. Chem. 22 (1997) 263.
[2] G.F. de Sousa, V.M. Deflon, L.C.C. Manso, J. Ellena, Y.P. Mascarenhas, E.S. Lang,
C.C. Gatto, B. Mahieu, Trans. Met. Chem. 32 (2007) 649.
[3] J.S. Casas, A. Sánchez, J. Sordo, A. Vázquez-López, E.E. Castellano, J. Zukerman-
Schpector, M.C. Rodríguez-Argüelles, U. Russo, Inorg. Chim. Acta 216 (1994)
169.
[4] D.K. Dey, A. Lycka, S. Mitra, G.M. Rosair, J. Organomet. Chem. 689 (2004) 88.
[5] G.F. de Sousa, L.S. Lang, L.C.C. Manso, V.M. Deflon, C.A.L. Filgueiras, E. Niquet, J.
Mol. Struct. 22 (2005) 753.
The d(119Sn) chemical shifts values found for [Me2Sn(L1)] and
[Me2Sn(L2)] are ꢁ149.4 and ꢁ147.2 ppm, respectively. These
chemical shifts are comparable with reported values of ꢁ146.8
and ꢁ151.5 ppm for Me2Sn[Ph(O)C@CH–C(Me)@N–N@C(O)Ph]
and Ph2Sn[Ph(O)C@CH–C(Me)@N–N@C(O)Ph], respectively. From
the similarity among d(119Sn) values of these diorganotin(IV)
compounds and the undeniable more acidic behavior of Ph2Sn2+
compared to Me2Sn2+, it is clear that our diphenyltin(IV) five-
coordinate complexes would not suffer dissociation in CDCl3 solu-
tion. The correlation between Mössbauer and X-ray structural data,
using a simple point-charge model, gave values of ꢁ0.84 mm/s for
[alkyl] and ꢁ0.77 mm/s for [Ph] in five-coordinate diorganotin(IV)
complexes embodying ONS-tridentate ligands.
Theoretical B3LYP calculations employing 3–21G(ꢀ) and DZVP
basis sets for the ligands and complexes agree quite well with
experimental data, maximum differences in bond lengths and an-
gles were not larger than 8%. Comparison between calculated
and X-ray bond lengths and internal angles of three complexes
showed MADs of approximately 0.03 Å and 2°. However, DZVP ba-
sis set calculations have a stronger tendency to overestimate Sn(IV)
bond lengths than 3–21G(ꢀ). Although 3–21G(ꢀ) showed better
geometries than DZVP for the complexes, the later was clearly
superior for IR harmonic frequencies specially the ones involving
the Sn(IV) atom. While general MADs were smaller than 20 cmꢁ1
for both basis sets, a MAD of 5 cmꢁ1 was found for DZVP on fre-
quencies involving Sn(IV). Average frequency scaling factors of
0.9866 (3–21(ꢀ)) and 0.9929 (DZVP) were obtained from a group
of 75 experimental selected frequencies, as well as specific Sn scal-
ing factors of 0.9587 (3–21(ꢀ)) and 0.9967 (DZVP) from 10 frequen-
cies of the original group.
[6] M.F. Iskander, I. Labib, M.M.Z. Nour El-Din, M. Tawfik, Polyhedron 8 (1989)
2755.
[7] M. Gielden, Appl. Organometal. Chem. 16 (2002) 481.
[8] M. Nath, S. Pokharia, X.-Q. Song, G. Eng, M. Gielen, M. Kemmer, M. Biesemans,
R. Willem, D. de Vos, Appl. Organometal. Chem. 17 (2003) 305.
[9] D.K. Day, B. Samanta, A. Lycra, L. Dahlenburg, Z. Naturforsch. 58b (2003) 336.
[10] G.M. Bancroft, V.G. Kumar Das, T.K. Sham, M.G. Clark, J. Chem. Soc. Dalton
Trans. 643 (1970).
[11] M.T.H. Tarafder, A.M. Ali, M.S. Elias, K.A. Crouse, S. Silong, Trans. Met. Chem. 25
(2000) 706.
[12] G.M. Sheldrick, SHELXS-97,
Structures, University of Göttingen, Germany, 1997.
[13] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement,
A Program for Automatic Solution of Crystal
A
University of Göttingen, Germany, 1997.
[14] A.C. Sartorelly, K.C. Agrawal, A.S. Tsiftsoglou, E.C. Moore, Adv. Enzyme Reg. 15
(1977) 117.
[15] S.I. Yakimovich, I.V. Zerova, K.N. Zelenin, V.V. Alekseev, A.R. Tugusheva, Russ. J.
Org. Chem. 33 (1997) 370.
[16] K.N. Zelenin, V.V. Alekseev, A.K. Zelenin, Y.S. Sushkova, Chem. Heter. Compd.
35 (1999) 87.
[17] T.P. Lockhart, F. Davidson, Organometallics 6 (1987) 2471.
[18] T.P. Lockhart, W.F. Manders, Inorg. Chem. 25 (1986) 892.
[19] J. Otera, J. Organomet. Chem. 221 (1981) 57.
[20] J. Holecek, M. Nádvorník, K. Handlír, A. Lycra, J. Organomet. Chem. 315 (1986)
299.
[21] H. Jankovics, C. Pettinari, F. Marchetti, E. Kamu, L. Nagy, S. Troyanov, L.
Pellerito, J. Inorg. Biochem. 97 (2003) 370.
[22] G.F. de Sousa, V.M. Deflon, L.C.C. Manso, J. Ellena, Y. Mascarenhas, E.S. Lang, B.
Mahieu, Trans. Met. Chem. 32 (2007) 649.
[23] T.K. Sham, G.M. Bancroft, Inorg. Chem. 14 (1975) 2281.
[24] G.F. de Sousa, R.H.P. Francisco, M.T.do P. Gambardella, R.H. de A. Santos, A.
Abras, J. Braz. Chem. Soc. 12 (2001) 722.
[25] P.J. Stephens, C.F. Devlin, M.J. Chambalowski, M.J. Frisch, J. Phys. Chem. 98
(1994) 11623.
5. Supplementary information
[26] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992) 560.
[27] C. Soza, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dizon, J. Phys.
Chem. 96 (1992) 6630.
[28] K.D. Dobbs, W.J. Hehre, J. Compd. Chem. 7 (1986) 359.
[29] S. Niu, M.B. Hall, Chem. Rev. 100 (2000) 353.
[30] S. Schmatz, C. Ebker, T. Labahn, H. Stoll, U. Klingebiel, Organometallics 22
(2003) 490.
[31] G. Barone, A. Silvestri, G. Ruisi, G. La Manna, Chem. Eur. J. 11 (2005) 6185.
[32] S. Kárpáti, R. Szalay, A.G. Császár, K. Süvegh, S. Nagy, J. Phys. Chem. A 111
(2007) 13172.
Crystallographic data for the structural analysis of the com-
plexes have been deposited at the Cambridge Crystallographic Data
Center with the deposition numbers CCDC 697620 for [Me2Sn(L1)],
CCDC 697621 for [Ph2Sn(L2)] and CCDC 742944 for [Me2Sn(L2)].
Copies of the data can be obtained free of charge on application
to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44 1223
336033 or e-mail: deposit@ccdc.cam.ac.uk).