6220 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 21
Hardcastle et al.
(15) Becattini, B.; Sareth, S.; Zhai, D. Y.; Crowell, K. J.; Leone, M.;
Reed, J. C.; Pellecchia, M. Targeting apoptosis via chemical design:
Inhibition of bid-induced cell death by small organic molecules.
Chem. Biol. 2004, 11, 1107-1117.
(16) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.;
Levine, A. J.; Pavletich, N. P. Structure of the MDM2 oncoprotein
bound to the p53 tumor suppressor transactivation domain. Science
1996, 274, 948-953.
(17) Bottger, V.; Bottger, A.; Howard, S. F.; Picksley, S. M.; Chene, P.;
Garcia-Echeverria, C.; Hochkeppel, H. K.; Lane, D. P. Identification
of novel mdm2 binding peptides by phage display. Oncogene 1996,
13, 2141-2147.
(18) Garcia-Echeverria, C.; Chene, P.; Blommers, M. J. J.; Furet, P.
Discovery of potent antagonists of the interaction between human
double minute 2 and tumor suppressor p53. J. Med. Chem. 2000,
43, 3205-3208.
(19) Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.;
Zeslawski, W.; Kamionka, M.; Rehm, T.; Muhlhahn, P.; Schumacher,
R.; Hesse, F.; Kaluza, B.; Voelter, W.; Enhh, R. A.; Holak, T. A.
Chalcone derivatives antagonise interactions between the human
oncoprotein MDM2 and p53. Biochemistry 2001, 40, 336-344.
(20) Zhao, J. H.; Wang, M. J.; Chen, J.; Luo, A. P.; Wang, X. Q.; Wu,
M.; Yin, D. L.; Liu, Z. H. The initial evaluation of nonpeptidic small-
molecule HDM2 inhibitors based on p53-HDM2 complex structure.
Cancer Lett. 2002, 183, 69-77.
(21) Majeux, N.; Scarsi, M.; Caflisch, A. Efficient electrostatic solvation
model for protein-fragment docking. Proteins 2001, 42, 256-
268.
(22) Duncan, S. J.; Gruschow, S.; Williams, D. H.; McNicolas, C.;
Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S. K.;
Moore, M. Isolation and structure elucidation of chlorofusin, a novel
p53-MDM2 antagonist from a Fusarium sp. J. Am. Chem. Soc. 2001,
123, 554-560.
(23) Chene, P.; Fuchs, J.; Bohn, J.; Garcia-Echeverria, C.; Furet, P.;
Fabbro, D. A small synthetic peptide, which inhibits the p53-hdm2
interaction, stimulates the p53 pathway in tumour cell lines. J. Mol.
Biol. 2000, 299, 245-253.
(24) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.;
Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.;
Fotouhi, N.; Liu, E. A. In vivo activation of the p53 pathway
by small-molecule antagonists of MDM2. Science 2004, 303, 844-
848.
(25) Grasberger, B. L.; Lu, T. B.; Schubert, C.; Parks, D. J.; Carver, T.
E.; Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz,
K. L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao,
S. Y.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C.
L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J.
C.; Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F.
Discovery and cocrystal structure of benzodiazepinedione HDM2
antagonists that activate p53 in cells. J. Med. Chem. 2005, 48, 909-
912.
(26) Parks, D. J.; LaFrance, L. V.; Calvo, R. R.; Milkiewicz, K. L.; Gupta,
V.; Lattanze, J.; Ramachandren, K.; Carver, T. E.; Petrella, E. C.;
Cummings, M. D.; Maguire, D.; Grasberger, B. L.; Lu, T. B. 1,4-
Benzodiazepine-2,5-diones as small molecule antagonists of the
HDM2-p53 interaction: discovery and SAR. Bioorg. Med. Chem.
Lett. 2005, 15, 765-770.
(27) Geiger, T.; Husken, D.; Weiler, J.; Natt, F.; Woods-Cook, K. A.;
Hall, J.; Fabbro, D. Consequences of the inhibition of Hdm2
expression in human osteosarcoma cells using antisense oligo-
nucleotides. Anti-Cancer Drug Des. 2000, 15, 423-430.
(28) Meye, A.; Wurl, P.; Bache, M.; Bartel, F.; Grunbaum, U.; Mansa-
ard, J.; Schmidt, H.; Taubert, H. Colony formation of soft tissue
sarcoma cells is inhibited by lipid-mediated antisense oligodeoxy-
nucleotides targeting the human mdm2 oncogene. Cancer Lett. 2000,
149, 181-188.
(29) Chen, L.; Agrawal, S.; Zhou, W.; Zhang, R.; Chen, J. Synergistic
activation of p53 by inhibition of MDM2 expression and DNA
damage. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 195-200.
(30) Wasylyk, C.; Salvi, R.; Argentini, M.; Dureuil, C.; Delumeau, I.;
Abecassis, J.; Debussche, L.; Wasylyk, B. p53 mediated death of
cells overexpressing MDM2 by an inhibitor of MDM2 interaction
with p53. Oncogene 1999, 18, 1921-1934.
(31) Chene, P.; Fuchs, J.; Carena, I.; Furet, P.; Echeverria, C. G. Study
of the cytotoxic effect of a peptidic inhibitor of the p53-hdm2
interaction in tumor cells. FEBS Lett. 2002, 529, 293-297.
(32) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B.
T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Ka¨llblad, P.; Kemp, S.
J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.; Reid,
R. J.; Saravanan, K.; Willems, H. M. G.; Lunec, J. Isoindolinone
based inhibitors of the MDM2-p53 protein-protein interaction.
Bioorg. Med. Chem. Lett. 2005, 15, 1515-1520.
transfection efficiency control per well, together with 0.2 µL of
FuGENE 6, and the volume made up to 25 µL with serum-free
medium.
Following 24 h transfection, the cells were treated with the
MDM2 inhibitors, which were made up in cell culture medium to
the appropriate concentration from concentrated stocks dissolved
in DMSO. Five replicate wells were used for each inhibitor
concentration. In addition, DMSO controls and untreated wells were
included. Following the incubation period with the inhibitors, the
96-well plates were checked under a light microscope for possible
lifting of cells. All the experiments carried out resulted in no
detectable cell lifting. The medium from the wells was gently
aspirated, and 25 µL of lysis buffer (Applied Biosystems) was added
into each well. The plate was then shaken on a rocker for 5 min
and stored at -20 °C until the luminometry was carried out.
Luciferase and â-galactosidase activities were measured using a
dual light chemiluminescence detection kit (Applied Biosystems)
and a luminometer (LB 96 V, EG&G Berthold) to quantify the
light emission. Normalized luciferase activity levels are calculated
as a ratio of luciferase/â-galactosidase and fold-induction with the
compounds calculated relative to the background with DMSO
solvent control alone.
Acknowledgment. The authors thank Cancer Research UK,
BBSRC, and EPSRC for funding. The EPSRC Mass Spectrom-
etry Service at the University of Wales (Swansea) is gratefully
acknowledged.
Supporting Information Available: Additional details of the
first round of virtual screening, experimental details and analytical
data for all compounds and intermediates, and a table of combustion
analysis data. This material is available free of charge via the
References
(1) Lane, D. P. Cancer. p53, guardian of the genome. Nature 1992, 358,
15-16.
(2) Vousden, K. H.; Lu, X. Live or let die: the cell’s response to p53.
Nat. ReV. Cancer 2002, 2, 594-604.
(3) Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A.
The mdm-2 oncogene product forms a complex with p53 protein and
inhibits p53-mediated transactivation. Cell 1992, 69, 1237-1245.
(4) Fuchs, S. Y.; Adler, V.; Buschmann, T.; Wu, X. W.; Ronai, Z. Mdm2
association with p53 targets its ubiquitination. Oncogene 1998, 17,
2543-2547.
(5) Oliner, J. D.; Kinzler, K. W.; Meltzer, P. S.; George, D. L.;
Vogelstein, B. Amplification of a gene encoding a p53-associated
protein in human sarcomas. Nature 1992, 358, 80-83.
(6) Chene, P. Inhibiting the p53-MDM2 interaction: An important target
for cancer therapy. Nat. ReV. Cancer 2003, 3, 102-109.
(7) Cochran, A. G. Antagonists of protein-protein interactions. Chem.
Biol. 2000, 7, R85-R94.
(8) Cochran, A. G. Protein-protein interfaces: mimics and inhibitors.
Curr. Opin. Chem. Biol. 2001, 5, 654-659.
(9) Toogood, P. L. Inhibition of protein-protein association by small
molecules: Approaches and progress. J. Med. Chem. 2002, 45, 1543-
1558.
(10) Yin, H.; Hamilton, A. D. Strategies for targeting protein-protein
interactions with synthetic agents. Angew. Chem., Int. Ed. 2005, 44,
4130-4163.
(11) Braisted, A. C.; Oslob, J. D.; Delano, W. L.; Hyde, J.; McDowell,
R. S.; Waal, N.; Yu, C.; Arkin, M. R.; Raimundo, B. C. Discovery
of a potent small molecule IL-2 inhibitor through fragment assembly.
J. Am. Chem. Soc. 2003, 125, 3714-3715.
(12) Yin, H.; Lee, G. I.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Omer, B.
P.; Ernst, J. T.; Wang, H. G.; Sebti, S. M.; Hamilton, A. D. Terphenyl-
based bak BH3 alpha-helical proteomimetics as low-molecular-weight
antagonists of Bcl-X-L. J. Am. Chem. Soc. 2005, 127, 10191-10196.
(13) Lesuisse, D.; Lange, G.; Deprez, P.; Benard, D.; Schoot, B.; Delettre,
G.; Marquette, J. P.; Broto, P.; Jean-Baptiste, V.; Bichet, P.; Sarubbi,
E.; Mandine, E. SAR and X-ray. A new approach combining
fragment-based screening and rational drug design: Application to
the discovery of nanomolar inhibitors of Src SH2. J. Med. Chem.
2002, 45, 2379-2387.
(14) Zeng, L.; Li, J. M.; Muller, M.; Yan, S.; Mujtaba, S.; Pan, C. F.;
Wang, Z. Y.; Zhou, M. M. Selective small molecules blocking HIV-1
Tat and coactivator PCAF association. J. Am. Chem. Soc. 2005, 127,
2376-2377.