Published on Web 10/28/2006
Chiral Translation and Cooperative Self-Assembly of Discrete
Helical Structures Using Molecular Recognition Dyads
Hiroshi Nakade,† Brian J. Jordan,† Hao Xu,† Gang Han,† Sudhanshu Srivastava,†
Rochelle R. Arvizo,† Graeme Cooke,‡ and Vincent M. Rotello*,†
Contribution from the Department of Chemistry, UniVersity of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003, and WestCHEM Centre for Supramolecular
Electrochemistry, Department of Chemistry, Joseph Black Building, UniVersity of Glasgow,
Glasgow G12 8QQ, United Kingdom
Received June 27, 2006; E-mail: rotello@chem.umass.edu
Abstract: Complementary diaminopyridine (DAP) and flavin derivatives self-assemble into discrete helically
stacked tetrads in hydrocarbon solvents. The self-assembled structure was demonstrated through induced
circular dichroism using DAPs with chiral side-chains and flavin with achiral side-chains. Flavin derivatives
with chiral side-chains were synthesized; cooperativity in the self-assembly was established through circular
dichroism (CD) profiles and melting curves. It was found that placing stereocenters in both recognition
units resulted in a strong bisignated profile and enhancement of complex stability, indicative of cooperative
self-assembly.
versatile liquid crystalline materials.7 Discrete self-assembly,
in contrast, provides monodisperse and well-defined structures
Introduction
displaying useful properties.8 Examples include molecular
capsulation,9 chiral amplification10 and memory,11 and selective
Molecular self-assembly presents access to ordered aggregates
in materials science.1 Extended self-assemblies provide three-
dimensional networks, which have led to the development of
materials for sensing,2 optoelectronic devices,3 transporting-
channels,4 gels,5 and nanotube materials,6 as well as highly
(7) (a) Kato, T.; Matsuoka, T.; Nishii, M.; Kamikawa, Y.; Kanie, K.; Nishimura,
T.; Yashima, E.; Ujiie, S. Angew. Chem., Int. Ed. 2004, 43, 1969-1972.
(b) Hirschberg, J.; Koevoets, R. A.; Sijbesma, R. P.; Meijer, E. W. Chem.-
Eur. J. 2003, 9, 4222-4231. (c) van Gorp, J. J.; Vekemans, J.; Meijer, E.
W. J. Am. Chem. Soc. 2002, 124, 14759-14769. (d) Barbera, J.; Puig, L.;
Romero, P.; Serrano, J. L.; Sierra, T. J. Am. Chem. Soc. 2005, 127, 458-
464. (e) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed.
2005, 45, 38-68. (f) Kamikawa, Y.; Nishii, M.; Kato, T. Chem.-Eur. J.
2004, 10, 5942-5951. (g) Bushey, M. L.; Nguyen, T. Q.; Zhang, W.;
Horoszewski, D.; Nuckolls, C. Angew. Chem., Int. Ed. 2004, 43, 5446-
5453. (h) Bushey, M. L.; Hwang, A.; Stephens, P. W.; Nuckolls, C. Angew.
Chem., Int. Ed. 2002, 41, 2828-2831. (i) Giorgi, T.; Lena, S.; Mariani,
P.; Cremonini, M. A.; Masiero, S.; Pieraccini, S.; Rabe, J. P.; Samori, P.;
Spada, G. P.; Gottarelli, G. J. Am. Chem. Soc. 2003, 125, 14741-14749.
(8) Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N. Chem. Soc.
ReV. 2004, 33, 363-372.
(9) (a) Rivera, J. M.; Martin, T.; Rebek, J. Science 1998, 279, 1021-1023.
(b) Rivera, J. M.; Craig, S. L.; Martin, T.; Rebek, J. Angew. Chem., Int.
Ed. 2000, 39, 2130. (c) Kerckhoffs, J.; ten Cate, M. G. J.; Mateos-Timoneda,
M. A.; van Leeuwen, F. W. B.; Snellink-Ruel, B.; Spek, A. L.; Kooijman,
H.; Crego-Calama, M.; Reinhoudt, D. N. J. Am. Chem. Soc. 2005, 127,
12697-12708. (d) Nuckolls, C.; Hof, F.; Martin, T.; Rebek, J. J. Am. Chem.
Soc. 1999, 121, 10281-10285. (e) Palmer, L. C.; Zhao, Y. L.; Houk, K.
N.; Rebek, J. Chem. Commun. 2005, 3667-3669.
(10) (a) Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N.
Supramol. Chem. 2005, 17, 67-79. (b) Prins, L. J.; Huskens, J.; de Jong,
F.; Timmerman, P.; Reinhoudt, D. N. Nature 1999, 398, 498-502. (c)
Ishida, Y.; Aida, T. J. Am. Chem. Soc. 2002, 124, 14017-14019. (d)
Takeuchi, M.; Imada, T.; Shinkai, S. Angew. Chem., Int. Ed. 1998, 37,
2096-2099. (e) ten Cate, A. T.; Dankers, P. Y. W.; Kooijman, H.; Spek,
A. L.; Sijbesma, R. P.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 6860-
6861. (f) Shi, X. D.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2001,
123, 6738-6739. (g) Prins, L. J.; Timmerman, P.; Reinhoudt, D. N. J.
Am. Chem. Soc. 2001, 123, 10153-10163.
(11) (a) Ziegler, M.; Davis, A. V.; Johnson, D. W.; Raymond, K. N. Angew.
Chem., Int. Ed. 2003, 42, 665-668. (b) Ikeda, C.; Yoon, Z. S.; Park, M.;
Inoue, H.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2005, 127, 534-535. (c)
Terpin, A. J.; Ziegler, M.; Johnson, D. W.; Raymond, K. N. Angew. Chem.,
Int. Ed. 2001, 40, 157-160. (d) Prins, L. J.; De Jong, F.; Timmerman, P.;
Reinhoudt, D. N. Nature 2000, 408, 181-184. (e) Ishi-i, T.; Crego-Calama,
M.; Timmerman, P.; Reinhoudt, D. N.; Shinkai, S. J. Am. Chem. Soc. 2002,
124, 14631-14641. (f) Ishi-i, T.; Crego-Calama, M.; Timmerman, P.;
Reinhoudt, D. N.; Shinkai, S. Angew. Chem., Int. Ed. 2002, 41, 1924-5.
† University of Massachusetts.
‡ University of Glasgow.
(1) Typical reviews: (a) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.;
Sijbesma, R. P. Chem. ReV. 2001, 101, 4071-4097. (b) Hoeben, F. J. M.;
Jonkheijm, P.; Meijer, E. W.; Schenning, A. Chem. ReV. 2005, 105, 1491-
1546. (c) Elemans, J.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003,
13, 2661-2670.
(2) Fenniri, H.; Deng, B. L.; Ribbe, A. E. J. Am. Chem. Soc. 2002, 124, 11064-
11072.
(3) (a) Wurthner, F.; Chen, Z. J.; Hoeben, F. J. M.; Osswald, P.; You, C. C.;
Jonkheijm, P.; von Herrikhuyzen, J.; Schenning, A.; van der Schoot, P.;
Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J. J.
Am. Chem. Soc. 2004, 126, 10611-10618. (b) Schenning, A.; Meijer, E.
W. Chem. Commun. 2005, 3245-3258. (c) Schenning, A.; Jonkheijm, P.;
Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2001, 123, 409-416. (d)
Jonkheijm, P.; Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.;
Schenning, A.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941-15949.
(e) Thalacker, C.; Wurthner, F. AdV. Funct. Mater. 2002, 12, 209-218.
(f) Jeukens, C.; Jonkheijm, P.; Wijnen, F. J. P.; Gielen, J. C.; Christianen,
P. C. M.; Schenning, A.; Meijer, E. W.; Maan, J. C. J. Am. Chem. Soc.
2005, 127, 8280-8281.
(4) (a) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal,
J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.;
Hu, D. A.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-
768. (b) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M.
J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902-17909. (c) Percec,
V.; Dulcey, A. S. E.; Peterca, M.; Ilies, M.; Ladislaw, J.; Rosen, B. M.;
Edlund, U.; Heiney, P. A. Angew. Chem., Int. Ed. 2005, 44, 6516-6521.
(d) Kaucher, M. S.; Harrell, W. A., Jr.; Davis, J. T. J. Am. Chem. Soc.
2006, 128, 38-39.
(5) (a) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M. Chem.-Eur.
J. 2004, 10, 5901-5910. (b) Kim, H. J.; Zin, W. C.; Lee, M. J. Am. Chem.
Soc. 2004, 126, 7009-7014.
(6) (a) Moralez, J. G.; Raez, J.; Yamazaki, T.; Motkuri, R. K.; Kovalenko, A.;
Fenniri, H. J. Am. Chem. Soc. 2005, 127, 8307-8309. (b) Miyauchi, M.;
Takashima, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc. 2005, 127,
2984-2989. (c) Raez, J.; Moralez, J. G.; Fenniri, H. J. Am. Chem. Soc.
2004, 126, 16298-16299.
9
14924
J. AM. CHEM. SOC. 2006, 128, 14924-14929
10.1021/ja064554z CCC: $33.50 © 2006 American Chemical Society