2078
T. Hanaya et al.
LETTER
(14) (a) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron
Lett. 1982, 23, 885. (b) Oikawa, Y.; Tanaka, T.; Horita, K.;
Yonemitsu, O. Tetrahedron Lett. 1984, 25, 5397.
(c) Tanaka, T.; Oikaya, Y.; Hamada, T.; Yonemitsu, O.
Tetrahedron Lett. 1986, 27, 3651.
(15) Addition of 2,2-dimethoxypropane gave a higher yield of 6
(80%) than that of reported method by use of only acetone
(68%): Gigg, R.; Payne, S.; Conant, R. J. Carbohydr. Res.
1983, 2, 207.
(16) When acidic hydrolysis of methyl 2,3-O-isopropylidene-4-
O-PMB-a-L-rhamnopyranoside was attempted to obtain 4-
O-PMB-L-rhamnose(8), removal of the PMB group
preferentially took place rather than hydrolysis of methyl
glycoside. Therefore we employed 1-propenyl glycoside,
which is cleavable under weaker acidic conditions.
(17) Hough, L.; Taylor, T. J. J. Chem. Soc. 1955, 3544.
(18) Weinstock, J. US 3505329, 1970; Chem. Abstr. 1970, 72,
132787h.
(19) A similar condensation of non-protected 5-deoxy-L-
erythro-pentos-2-ulose with the same pyrimidine derivative
has been reported to provide an 8:2 mixture of 6- and 7-
substituted pterins in a relatively low yield (37%; ref. 18).
(20) Selected NMR data for 14a: 1H (600 MHz, CDCl3): d = 1.23
(3 H, d, J2¢,3¢ = 6.6 Hz, H-3¢), 4.77 (1 H, d, J1¢,2¢ = 4.4 Hz, H-
1¢), 5.36 (1 H, qd, H-2¢), 8.96 (1 H, s, H-7). 13C (151 MHz,
CDCl3): d = 15.92 (C-3¢), 71.76 (C-2¢), 82.21 (C-1¢), 128.36
(C-4a), 149.88 (C-7), 150.71 (C-6), 153.63 (C-8a), 157.55
(C-2), 161.83 (C-4).
References and Notes
(1) (a) Pfleiderer, W. Angew. Chem., Int. Ed. Engl. 1964, 3,
114. (b) Rembold, H.; Gyure, W. L. Angew. Chem., Int. Ed.
Engl. 1972, 11, 1061. (c) Hama, T.; Obika, M. Nature
(London) 1960, 187, 326. (d) Forrest, H. S.; Van Baalen, C.
Ann. Rev. Microbiol. 1970, 24, 91. (e) Ziegler, I.; Harmsen,
R. Adv. Insect. Physiol. 1969, 6, 139.
(2) (a) Patterson, E. L.; Broquist, H. P.; Albrecht, A. M.; von
Saltza, M. H.; Stokstad, E. L. R. J. Am. Chem. Soc. 1955, 77,
3167. (b) Patterson, E. L.; von Saltza, M. H.; Stokstad, E. L.
R. J. Am. Chem. Soc. 1956, 78, 5871.
(3) (a) Kaufman, S.; Fisher, D. B. In Molecular Mechanisms of
Oxygen Activation; Hayaishi, O., Ed.; Academic Press: New
York, 1974, 285–369. (b) Kaufman, S.; Kaufman, E. E. In
Folates and Pterins, Vol. 2; Blakley, R.; Benkovic, S. J.,
Eds.; J. Wiley and Sons: New York, 1985, 251–352.
(4) Forrest, H. S.; Van Baalen, C.; Myers, J. Arch. Biochem.
Biophys. 1958, 78, 95.
(5) Choi, Y. K.; Hwang, Y. K.; Kang, Y. H.; Park, Y. S.
Pteridines 2001, 12, 121.
(6) Noguchi, Y.; Ishii, A.; Matsushima, A.; Haishi, D.;
Yasumuro, K.; Moriguchi, T.; Wada, T.; Kodera, Y.; Hiroto,
M.; Nishihara, H.; Sekine, M.; Inada, Y. Mar. Biotechnol.
1999, 1, 207.
(7) Cha, K. W.; Pfleiderer, W.; Yim, J. J. Helv. Chim. Acta
1995, 78, 600.
(8) (a) Lin, X.; White, R. H. J. Bacteriol. 1988, 170, 1396.
(b) Cho, S.-H.; Na, J.-U.; Youn, H.; Hwang, C.-S.; Lee, C.-
H.; Kang, S.-O. Biochim. Biophys. Acta 1998, 1379, 53.
(c) Lee, H. W.; Oh, C. H.; Geyer, A.; Pfleiderer, W.; Park,
Y. S. Biochim. Biophys. Acta 1999, 1410, 61.
(9) Ikawa, M.; Sasner, J. J.; Haney, J. F.; Foxall, T. L.
Phytochemistry 1995, 38, 1229.
(10) Hanaya, T.; Soranaka, K.; Harada, K.; Yamaguchi, H.;
Suzuki, R.; Endo, Y.; Yamamoto, H.; Pfleiderer, W.
Heterocycles 2006, 67, 299.
Selected NMR data for 14b: 1H (600 MHz, CDCl3): d = 1.22
(3 H, d, J2¢,3¢ = 6.6 Hz, H-3¢), 4.66 (1 H, d, J1¢,2¢ = 4.2 Hz, H-
1¢), 5.37 (1 H, qd, H-2¢), 8.78 (1 H, s, H-6). 13C (151 MHz,
CDCl3): d = 15.61 (C-3¢), 71.94 (C-2¢), 82.26 (C-1¢), 129.29
(C-4a), 159.98 (C-7), 140.92 (C-6), 153.17 (C-8a), 157.88
(C-2), 161.83 (C-4).
(21) (a) Tobias, S.; Günther, H.; Pfleiderer, W. Chem. Ber. 1985,
118, 354. (b) Geerts, J. P.; Nagel, A.; Van der Plas, H. C.
Org. Magn. Reson. 1976, 8, 606.
(22) Use of SnCl4 as an activator resulted in the formation of diol
4 by cleavage of PMB group instead of glycosylation.
(23) Farkas, J.; Ledvina, M.; Brokes, J.; Jezek, J.; Zajicek, J.;
Zaoral, M. Carbohydr. Res. 1987, 163, 63.
(24) General Procedure for Glycosylation of 15.
To a solution of 15 (56 mg, 0.10 mmol), glycosyl bromide
(0.30 mmol) and TMU (0.012 mL, 0.10 mmol) in dry
CH2Cl2 (1.0 mL) was added silver triflate (56 mg, 0.22
mmol). The mixture was stirred at r.t. for 3 h, diluted with
CHCl3, and filtered through Celite®. The filtrate was washed
with aq NaHCO3, dried (MgSO4), and evaporated in vacuo.
The residue was purified by column chromatography to give
the 2¢-O-glucopyranosyl-L-biopterin derivative.
(11) Ness, R. K.; Fletcher, H. G. Jr.; Hudson, C. S. J. Am. Chem.
Soc. 1950, 72, 2200.
(12) (a) Patterson, E. L.; Milstrey, R.; Stockstad, E. L. R. J. Am.
Chem. Soc. 1956, 78, 5868. (b) Viscontini, M.; Provenzale,
R.; Frei, W. F. Helv. Chim. Acta 1972, 55, 570. (c) Taylor,
E. C.; Jacobi, P. A. J. Am. Chem. Soc. 1976, 98, 2301.
(d) Kappel, M.; Mengel, R.; Pfleiderer, W. Liebigs Ann.
Chem. 1984, 1815. (e) Mori, K.; Kikuchi, H. Liebigs Ann.
Chem. 1989, 963. (f) Murata, S.; Sugimoto, T.; Ogiwara, S.;
Mogi, K.; Wasada, H. Synthesis 1992, 303.
(13) (a) Hanaya, T.; Torigoe, K.; Soranaka, K.; Yamamoto, H.;
Yao, Q.; Pfleiderer, W. Pteridines 1995, 6, 1. (b) Yao, Q.;
Pfleiderer, W. Helv. Chim. Acta 2003, 86, 1.
Synlett 2006, No. 13, 2075–2078 © Thieme Stuttgart · New York