44, 3974; (c) Pellissier, H. Adv. Synth. Catal. 2011, 353, 1613; (d)
Huerta, F. F.; Minidis, A. B. E.; Bäckvall, J. E. Chem. Soc. Rev.
2001, 30, 321; (e) Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M.
Chem. Rev. 2017, 117, 4528; (f) K. S. Petersen, Asian J. Org. Chem.
2016, 5, 308; (g) Echeverria, P.-G.; Ayad, T.; Phansavath, P.;
Ratovelomanana-Vidal, V. Synthesis 2016, 48, 2523; (h)
Gurubrahamam, R.; Cheng, Y.-S.; Huang, W.-Y.; Chen, K.
ChemCatChem. 2016, 8, 86.
• High efficiency and excellent ee
3.
4.
Deracemization used in this text is the definition in the strict sense,
and the only difference between the product and the starting
material is that the latter is enantioenriched.
(a) Faber, K. Chem. Eur. J. 2001, 7, 5004; (b) Gruber, C. C.;
Lavandera, I.; Faber, K.; Kroutil, W. Adv. Synth. Catal. 2006, 348,
1789; (c) Turner, N. J. Curr. Opin. Chem. Biol. 2010, 14, 115;(d)
Rachwalski, M.; Vermue, N.; Rutjes, F. P. J. T. Chem. Soc. Rev.
2013, 42, 9268; (e) Simon, R. C.; Richter, N.; Busto, E.; Kroutil, W.
ACS Catal. 2014, 4, 129.
5.
6.
An innovative example of photochemical deracemization of allenes
enabled by chiral sensitizer showing different energy transfer
efficiencies for two enantiomers, see: (a) Hölzl-Hobmeier, A.;
Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T.
Nature. 2018, 564, 240; (b) Tröster, A.; Bauer, A.; Jandl, C.; Bach,
T. Angew. Chem. Int. Ed. 2019, 58, 3538.
Current deracemization studies rely heavily on enzymatic catalysis
with alcohol and amine substrates, see: (a) Voss, C. V.; Gruber, C.
C.; Kroutil, W. Angew. Chem. Int. Ed. 2008, 47, 741; (b) Voss, C.
V.; Gruber, C. C.; Faber, K.; Knaus, T.; Macheroux, P.; Kroutil, W.
J. Am. Chem. Soc. 2008, 130, 13969; (c) Dunsmore, C. J.; Carr, R.;
Fleming, T.; Turner, N. J. J. Am. Chem. Soc. 2006, 128, 2224; (d)
Ghislieri, D.; Green, A. P.; Pontini, M.; Willies, S. C.; Rowles, I.;
Frank, A.; Grogan, G.; Turner, N. J. J. Am. Chem. Soc. 2013, 135,
10863; (e) Yasukawa, K.; Nakano, S.; Asano, Y. Angew. Chem. Int.
Ed. 2014, 53, 4428; (f) Chen, M.; Han, Y.; Ma, D.; Wang, Y.; Lai,
Z.; Sun, J. Chin. J. Chem. 2018, 36, 587.
7.
8.
(a) Shimada, Y.; Miyake, Y.; Matsuzawa, H.; Nishibayashi, Y.
Chem. Asian J. 2007, 2, 393; (b) Adair, G. R. A.; Williams, J. M. J.
Chem. Commun. 2007, 25, 2608; (c) Qu, P.; Kuepfert, M.;
Jockusch, S.; Weck, M. ACS Catal. 2019, 9, 2701.
(a) Lackner, A. D.; Samant, A. V.; Toste, F. D. J. Am. Chem. Soc.
2013, 135, 14090; (b) Ji, Y.; Shi, L.; Chen, M. W.; Feng, G. S.;
Zhou, Y. G. J. Am. Chem. Soc. 2015, 137, 10496; (c) Shin, N. Y.;
Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science. 2019,
366, 364.
9.
(a) Wan, M.; Sun, S.; Li, Y.; Liu, L. Angew. Chem. Int. Ed. 2017,
56, 5116; (b) Lu, R.; Li, Y.; Zhao, J.; Li, J.; Wang, S.; Liu, L. Chem.
Commun. 2018, 54, 4445.
10. Zhang, L.; Zhu, R.; Feng, A.; Zhao, C.; Chen, L.; Feng, G.; Liu, L.
Chem. Sci. 2020, 11, 4444.
11. (a) Gulzar, N.; Schweitzer-Chaput, B.; Klussmann, M. Catal. Sci.
Technol. 2014, 4, 2778; (b) Wendlandt, A. E.; Suess, A. M.; Stahl,
S. S. Angew. Chem. Int. Ed. 2011, 50, 11062; (c) Shi, Z.; Zhang, C.;
Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
12. (a) Townsend, C. A.; Brown, A. M. J. Am. Chem. Soc. 1983, 105,
913; (b) Spencer, J. L.; Flynn, E. H.; Roeske, R. W.; Siu, F. Y.;
Chauvette, R. R. J. Med. Chem. 1966, 9, 746; (c) Rama Rao, A. V.;
Gurjar, M. K.; Laxma Reddy, K.; Rao, A. S. Chem. Rev. 1995, 95,
2135.
13. (a) Shang, G.; Yang, Q.; Zhang, X. Angew. Chem. Int. Ed. 2006, 45,
6360; (b) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007,
129, 5830; (c) Kang, Q.; Zhao, Z. A.; You, S. L. Adv. Synth. Catal.
2007, 349, 1657; (d) Zhu, C.; Akiyama, T. Adv. Synth. Catal. 2010,
352, 1846; (e) Mazuela, J.; Antonsson, T.; Johansson, M. J.; Knerr,
L.; Marsden, S. P. Org. Lett. 2017, 19, 5541.
14. (a) Akiyama, T. Chem. Rev. 2007, 107, 5744; (b) Terada, M.
Synthesis. 2010, 42, 1929; (c) Parmar, D.; Sugiono, E.; Raja, S.;
Rueping, M. Chem. Rev. 2014, 114, 9047; (d) Čorić, I.; List, B.
Nature. 2012, 483, 315; (e) Hoffmann, S.; Seayad, A. M.; List, B.
Angew. Chem. Int. Ed. 2005, 44, 7424.
15. (a) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res.
2015, 48, 388; (b) Zhu, C.; Falck, J. R. ChemCatChem. 2011, 3,
1850; (c) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180; (d)
Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem. Int.
Ed. 2011, 50, 8180.
• Redox deracemization of α-aryl glycine esters
• Molecular oxygen as terminal oxidant