Scheme 1
Figure 1. S-Adenosyl-L-homocysteine and analogues with the
sulfur atom replaced by the vinyl unit.
might be substrates for the hydrolytic activity. Enzyme-
mediated addition of water might occur at C5′ or C6′ of A
or B to generate new species with hydroxyl or keto (after
â-elimination of HBr) binding sites within the enzyme. X-ray
structures of such oxidation and/or hydrolytic activity-bound
products might provide important information regarding key
residues in the protein and their interactions with substrates
(Hcy unit) and/or the sequestered water molecule.
Retrosynthetic analysis indicates that AdoHcy analogue
A (X ) H) can be prepared by construction of a new C5′-
C6′ double bond via Wittig or metathesis reactions. For
example, condensation of adenosine 5′-aldehyde with a
Wittig-type reagent or cross-metathesis between 5′-deoxy-
5′-methyleneadenosine and the appropriate amino acid-
derived terminal alkenes should give A. Because nucleoside
5′-aldehydes are unstable in the presence of strong bases
required for the generation of nonstabilized phosphorane-
Wittig reagents,7 we decided to target an AdoHcy analogue
of type A via the cross-metathesis reaction. Another pos-
sibility is Pd-catalyzed cross-coupling approaches between
sp2 and sp3 hybridized carbons to form a new C6′-C7′ single
bond as a key step.8,9
Alkylation of protected glycine 1 with 4-bromo-1-butene
followed by hydrolysis of the resulting Schiff base deriva-
tive10 2 yielded racemic 2-amino-5-hexenoate 3 (Scheme 1).
Attempted cross-metathesis11 between 5′-deoxy-2′,3′-O-iso-
propylidene-5′-methyleneadenosine 9a5a,7 and N-benzoyl 4
or N-Boc 5 protected amino acids bearing a terminal double
bond in the presence of first and second (2-imidazolidin-
ylidene-Ru) generation Grubbs catalysts11c,e failed to give
the desired products 10a or 11a (Scheme 2). Also, metathesis
of the 6-N-benzoyl adenosine substrate 9b with 4 or 5 was
unsuccessful. It is noteworthy that metathesis between 5′-
deoxy-2′,3′-O-isopropylidene-5′-methyleneuridine12 and 4
(CH2Cl2/second generation Grubbs catalyst) afforded the
desired product of type 10 (i.e., B ) U; 62%)13 in addition
to two dimers resulting from the self-metathesis of nucleo-
side14 and amino acid15 (e.g., 17) substrates.
(6) For other examples on the hydrolytic activity of AdoHcy hydrolase,
see: (a) Ref 1c. (b) Yang, X.; Yin, D.; Wnuk, S. F.; Robins, M. J.;
Borchardt, R.T. Biochemistry 2000, 39, 15234-15241. (4′-Haloacetylene
adenosine analogues). (c) Guillerm, G.; Guillerm, D.; Vandenplas-
Witkowski, C.; Roginaux, H.; Carte, N.; Leize, E.; Van Dorsselaer, A.; De
Clercq, E.; Lambert, C. J. Med. Chem. 2001, 44, 2743-2752. (5′-S-Allenyl-
5′-thioadenosine). (d) Jeong, L. S.; Yoo, S. J.; Lee, K. M.; Koo, M. J.;
Choi, W. J.; Kim, H. O.; Moon, H. R.; Lee, M. Y.; Park, J. G.; Lee, S. K.;
Chun, M. W. J. Med. Chem. 2003, 46, 201-203. (Fluoro-neplanocin A).
(e) Wnuk, S. F.; Lewandowska, E.; Sacasa, P. R.; Crain, L. N.; Zhang, J.;
Borchardt, R. T.; De Clercq, E. J. Med. Chem. 2004, 47, 5251-5257. (4′-
Enyne adenosine analogues). (f) Guillerm, G.; Muzard, M.; Glapski, C.
Bioorg. Med. Chem. Lett. 2004, 14, 5799-5802. (Haloethyl esters of
homoadenosine-6′-carboxylic acid). (g) Guillerm, G.; Muzard, M.; Glapski,
C.; Pilard, S.; De Clercq, E. J. Med. Chem. 2006, 49, 1223-1226. [5′-
Deoxy-5′-(cyanomethylene)adenosine].
(7) Wnuk, S. F.; Robins, M. J. Can. J. Chem. 1991, 69, 334-338.
(8) For example couplings between 5′-deoxy-5′-(iodomethylene)-
adenosine5a and suitable alkylzinc bromide produced analogues of type A,
see: Wnuk, S. F.; Lalama, J.; Andrei, D.; Garmendia, C.; Robert, J.
S-Adenosylhomocysteine and S-ribosylhomocysteine analogues with sulfur
atom replaced by the vinyl unit. Abstracts of Papers, Carbohydrate DiVision,
229th National Meeting of the American Chemical Society, San Diego,
CA, March 13-17, 2005; American Chemical Society: Washington, DC,
2005; CARB-035.
We found however that treatment of 9b with 4 in the
presence of the Hoveyda-Grubbs catalyst16 (o-isopro-
poxyphenylmethylene-Ru) led to the formation of metathesis
product 10b (51%) in addition to dimer 17 (11%), and self-
metathesis of 9b was not observed. Metathesis of the 6-N,N-
(10) (a) O’Donnell, M. J.; Wojciechowski, K. Synthesis 1984, 313-315.
(b) O’Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982, 47, 2663-2666.
(11) (a) Grubbs, R. H.; Chang, S.; Tetrahedron 1998, 54, 4413-4450.
(b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012-3043. (c) Trnka,
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (d) Chatterjee, A.
K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360-11370. (e) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem., Int. Ed. 2005, 44, 4490-4527.
(9) (a) Pd-catalyzed alkylation of the 5′-deoxy-5′-(dihalomethylene)-
adenosine5b precursors employing recently reported selective monoalkylation
of the unactivated 1,1-dichloro-1-alkenes9b or 1-fluoro-1-halo-1-alkenes9c
might give direct access to analogues B. (b) Tan, Z.; Negishi, E.-I. Angew.
Chem., Int. Ed. 2006, 45, 762-765. (c) Andrei, D.; Wnuk, S. F. J. Org.
Chem. 2006, 71, 405-408.
(12) Wnuk, S. F.; Robins, M. J. Can. J. Chem. 1993, 71, 192-198.
(13) Pablo R. Sacasa, M. Sc. Thesis, Florida International University,
2003.
5094
Org. Lett., Vol. 8, No. 22, 2006