Journal of the American Chemical Society
COMMUNICATION
tris(2,4,6-trimethoxyphenyl)phosphonium-acetyl (TMPP-Ac)
derivatization, which introduces a fixed positive charge and
thereby forces observed singly charged anions to have two
deprotonation sites (Figure S8). By contrast, introduction of a
fixed positive charge in the form of an N-terminal quaternary
amine did enable niECD of CCK (Figure 3C). Quaternary amine
derivatization also rescued niECD ability of substance P-OH
(Figure S9). However, the presence of the fixed charge site
altered the fragmentation behavior in both cases, similar to
reported behavior of fixed charge-containing peptides in con-
ventional ECD/ETD.23aꢁd The lack of success for TMPP-Ac
derivatization or metal adduction may be explained by effective
shielding of the positively charged site by the aromatic groups
surrounding the phosphonium, or by the peptide carbonyls
wrapping around the metal ion. Thus, the presence of a gas-
phase zwitterion does not appear to be the only criterion for
successful niECD. The particular gas-phase zwitterion structure
is likely also crucial: the influence of peptide gas-phase structure has
been extensively studied in conventional cation ECD and is known
to have a profound influence on fragmentation behavior.24aꢁd
In summary, we show that peptide anions can capture
∼3.5ꢁ6.5 eV electrons, resulting in radical species with in-
creased charge and yielding peptide backbone bond fragmenta-
tion (niECD) analogous to that observed in cation ECD/ETD,
including PTM retention and higher sequence coverage compared
to CAD. Increased charge improves signal-to-noise ratios in FT-ICR
MS because the generated image current is proportional to the
charge state.3 The presence of a coumarin radical trap improved
electron capture efficiency but limited fragmentation, presumably
due to decreased radical mobility. niECD allows localization of
PTMs and de novo sequencing for acidic peptides that show
improved ionization in negative-ion mode compared to positive-
ion mode, e.g., phospho- and sulfopeptides. Further, niECD is
compatible with (but not limited to) singly charged peptides, which
allows coupling with matrix-assisted laser desorption/ionization.
’ REFERENCES
(1) Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem.
Soc. 1998, 120, 3265.
(2) Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt,
D. F. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528.
(3) Fung, Y. M. E.; Adams, C. M.; Zubarev, R. A. J. Am. Chem. Soc.
2009, 131, 9977.
(4) Bowie, J. H.; Brinkworth, C. S.; Dua, S. Mass Spectrom. Rev. 2002,
21, 87.
(5) (a) Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Chem. Phys.
Lett. 2001, 342, 299. (b) Kweon, H. K.; Hakansson, K. J. Proteome Res.
2008, 7, 745. (c) Wolff, J. J.; Chi, L.; Linhardt, R. J.; Amster, I. J. Anal.
Chem. 2007, 79, 2015.
(6) (a) Coon, J. J.; Shabanowitz, J.; Hunt, D. F.; Syka, J. E. P. J. Am. Soc.
Mass Spectrom. 2005, 16, 880. (b) Huzarska, M.; Ugalde, I.; Kaplan, D. A.;
Hartmer, R.; Easterling, M. L.; Polfer, N. C. Anal. Chem. 2010, 82, 2873.
(7) (a) Misharin, A. S.; Silivra, O. A.; Kjeldsen, F.; Zubarev, R. A.
Rapid Commun. Mass Spectrom. 2005, 19, 2163. (b) Berkout, V. D. Anal.
Chem. 2009, 81, 725.
(8) Cook, S. L.; Jackson, G. P. J. Am. Soc. Mass Spectrom. 2011,
22, 1088.
(9) Hartig, J.; Blom, M. N.; Hampe, O.; Kappes, M. M. Int. J. Mass
Spectrom. 2003, 229, 93.
(10) Liu, B.; Hvelplund, P.; Nielsen, S. B.; Tomita, S. Phys. Rev. Lett.
2004, 92, 168301.
(11) Boltalina, O. V.; Hvelplund, P.; Larsen, M. C.; Larsson, M. O.
Phys. Rev. Lett. 1998, 80, 5101.
(12) Belyayev, M. A.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. J. Am.
Soc. Mass Spectrom. 2006, 17, 1428.
(13) (a) Jones, A. W.; Mikhailov, V. A.; Iniesta, J.; Cooper, H. J.
J. Am. Soc. Mass Spectrom. 2010, 21, 268. (b) Sohn, C. H.; Chung, C. K.;
Yin, S.; Ramachandran, P.; Loo, J. A.; Beauchamp, J. L. J. Am. Chem. Soc.
2009, 131, 5444.
(14) Bomse, D. S.; Woodin, R. L.; Beauchamp, J. L. J. Am. Chem. Soc.
1979, 101, 5503.
(15) Kjeldsen, F.; Haselmann, K.; Budnik, B. A.; Jensen, F.; Zubarev,
R. A. Chem. Phys. Lett. 2002, 356, 201.
(16) Kalli, A.; Grigorean, G.; Hakansson, K. J. Am. Soc. Mass
Spectrom. 2011, DOI: 10.1007/s13361-011-0233-6.
(17) Lin, C.; O’Connor, P. B.; Cournoyer, J. J. J. Am. Soc. Mass
Spectrom. 2006, 17, 1605.
’ ASSOCIATED CONTENT
(18) (a) Creese, A. J.; Cooper, H. J. J. Am. Soc. Mass Spectrom. 2008,
19, 1263. (b) Woods, A. S. J. Proteome Res. 2004, 3, 478.
(19) (a) Simons, J. Chem. Phys. Lett. 2010, 484, 81. (b) Syrstad, E. A.;
Turecek, F. J. Am. Soc. Mass Spectrom. 2005, 16, 208. (c) Zubarev, R. A.;
Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter,
B. K.; McLafferty, F. W. J. Am. Chem. Soc. 1999, 121, 2857.
(20) Vasil’ev, Y. V.; Figard, B. J.; Morre, J.; Deinzer, M. L. J. Chem.
Phys. 2009, 131, 044317.
(21) Marchese, R.; Grandori, R.; Carloni, P.; Raugei, S. PLoS
Comput. Biol. 2010, 6, e1000775.
(22) Jockusch, R. A.; Price, W. D.; Williams, E. R. J. Phys. Chem. A
1999, 103, 9266.
(23) (a) Xia, Y.; Gunawardena, H. P.; Erickson, D. E.; McLuckey,
S. A. J. Am. Chem. Soc. 2007, 129, 12232. (b) Chamot-Rooke, J.; van der Rest,
G.; Dalleu, A.; Bay, S.; Lemoine, J. J. Am. Soc. Mass Spectrom. 2007, 18, 1405.
(c) Chung, T. W.; Moss, C. L.; Zimnicka, M.; Johnson, R. S.; Moritz, R. L.;
Turecek, F. J. Am. Soc. Mass Spectrom. 2011, 22, 13. (d) Li, X. J.; Cournoyer,
J. J.; Lin, C.; O’Connor, P. B. J. Am. Soc. Mass Spectrom. 2008, 19, 1514.
(24) (a) Mihalca, R.; Kleinnijenhuis, A. J.; McDonnell, L. A.; Heck,
A. J. R.; Heeren, R. M. A. J. Am. Soc. Mass Spectrom. 2004, 15, 1869. (b)
Robinson, E. W.; Leib, R. D.; Williams, E. R. J. Am. Soc. Mass Spectrom.
2006, 17, 1469. (c) Ben Hamidane, H.; He, H.; Tsybin, O. Y.; Emmett,
M. R.; Hendrickson, C. L.; Marshall, A. G.; Tsybin, Y. O. J. Am. Soc. Mass
Spectrom. 2009, 20, 1182. (d) Breuker, K.; Oh, H. B.; Lin, C.; Carpenter,
B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14011.
S
Supporting Information. Methods figures, and table.
b
This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
Present Addresses
^Analytical Chemistry Core Lab, ASAN Medical Center, 88,
Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
Author Contributions
§These authors contributed equally to this work.
’ ACKNOWLEDGMENT
This work was supported by an NSF Career Award (CHE-05-
47699). H.J.Y. and H.S. were partially supported by George
Ashworth Analytical Chemistry Fellowships. S.Z. was supported
by a Summer Undergraduate Research Exchange Program spon-
sored by Pfizer Global R&D and Tsinghua University School of
Life Sciences. R. A. Zubarev and K. E. Hersberger are thanked for
valuable discussions.
16793
dx.doi.org/10.1021/ja207736y |J. Am. Chem. Soc. 2011, 133, 16790–16793