Published on Web 10/07/2006
A Total Synthesis of Xestodecalactone A and Proof of Its
Absolute Stereochemistry: Interesting Observations on
Dienophilic Control with 1,3-Disubstituted Nonequivalent
Allenes
Toshiharu Yoshino,† Fay Ng,† and Samuel J. Danishefsky*,†,‡
Contribution from the Department of Chemistry, Columbia UniVersity, HaVemeyer Hall, 3000
Broadway, New York, New York 10027, and the Laboratory for Bioorganic Chemistry,
Sloan-Kettering Institute for Cancer Research, 1275 York AVenue, New York, New York 10021
Received June 16, 2006; E-mail: s-danishefsky@ski.mskcc.org
Abstract: A concise total synthesis of xestodecalactone A, utilizing a Diels-Alder strategy is described.
The focal Diels-Alder reaction relied on an “ynoate” dienophile to rapidly assemble the required resorcylinic
acid scaffold. During this study, Diels-Alder cycloaddition reactions involving 1,3-disubstituted nonequivalent
allene dienophiles were studied, and some surprising results were encountered.
Introduction
macrolactone, we envisioned the possibility of using our then
new Diels-Alder methodology to build the aromatic ring. For
A variety of natural products can be viewed in the context
of the fusion of a macrolactone moiety with a resorcinylic
aromatic ring.1 In most cases,2 the fusion encompasses the
carbons R and â to the lactonic carbonyl group and carbons 5
and 6 of the resorcinol. The resultant system, (cf. 1, Figure 1)
corresponds to a lactone based on an orsellinic acid format,
functionalized at its benzylic site (see asterisk) with a side chain
bearing a pendant ω-hydroxyl group. Classic examples of such
systems are the 12-membered orsellinic acid type lactone
lasiodiplodin3 and the 14-membered orsellinic acid macrolides
zearalenone4 and radicicol.5 Like radicicol, relatively new
members to this group such as 14-membered aigialomycin D,6
and hypothemycin7 also possess potentially useful antitumor
activity.
instance, in our lasiodiplodin synthesis,9 cycloaddition of a
synergisitic 1,1,3-trioxygenated diene 7 with â-alkylated pro-
piolic ester dienophile 8 led to 9 and, shortly thereafter, to the
target. Thus, in keeping with the broad classification b of Figure
1 (see dotted line), lasiodiplodin was built from an “ynoate”
disconnection. While occurring with tight regiospecific control,
such uncatalyzed Diels-Alder reactions of monoactivated
acetylenic dienophiles (bearing substitution at the nonactivated
acetylenic carbons) require rather high temperatures. This being
the case, they tend to occur not surprisingly in mediocre yields.
A more pleasing route to related substructures was realized
via Diels-Alder reaction between diene 7 and the highly
reactive allene dienophile 10 (Scheme 1). Following regiospe-
cific cycloaddition, elimination of one of the alkoxy groups from
the erstwhile C1 of 7, and aromatization (presumably of 11) a
hydroaromatic system (cf. 12) was in hand.10 Given the
symmetrical character of allene 10, chemoselectivity issues
As early as 1978, our group described the synthesis of
lasiodiplodin (2), employing a significant departure from the
then prevailing strategies for synthesizing benzofused macro-
lactones.8 As an alternative to starting with a prebuilt benzo
structure around which would be built the cycloaliphatic
(8) For selected references of other syntheses of lasiodiplodin: (a) Gerlach,
H.; Thalmann, A. HelV. Chim. Acta 1977, 60, 2866. (b) Takahashi, T.;
Kasuga, K.; Tsuji, J. Tetrahedron Lett. 1978, 4917. (c) Fink, M.; Gaier,
H.; Gerlach, H. HelV. Chim. Acta 1982, 65, 2563. (d) Braun, M.; Mahler,
U.; Houben, S. Liebigs Ann. 1990, 513. (e) Jones, G. B.; Huber, R. S.
Synlett 1993, 367. (f) Brachen, F.; Schulte, B. J. Chem. Soc., Perkin Trans.
1 1996, 2619. (g) Furstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B.
J. Org. Chem. 2000, 65, 7990. For selected references of syntheses of
zearalenone: (h) Vlattas, I.; Harrison, I. T.; Tokes, L. Fried, J. H.; Cross,
A. D. J. Org. Chem. 1968, 33, 4176. (i) Girotra, N. N.; Wendler, N. L. J.
Org. Chem. 1969, 34, 3192. (j) Corey, E. J.; Nicolaou, K. C. J. Am. Chem.
Soc. 1974, 96, 5614. (k) Massamune, S.; Kamata, S.; Schilling, W. J. Am.
Chem. Soc. 1975, 97, 3515. (l) Takahashi, T.; Kasuga, K.; Takahashi, M.;
Tsuji, J. J. Am. Chem. Soc. 1979, 101, 5072. (m) Rao, A. V. R.; Deshmukh,
M. N.; Sharma, G. V. M. Tetrahedron 1987, 43, 779. (n) Hitchcock, S.
A.; Pattenden, G. Tetrahedron Lett. 1990, 31, 3641. For selected references
on other syntheses of radicicol: (o) Tichkowsky, I.; Lett, R. Tetrahedron
Lett. 2002, 43, 4003. For synthesis of hypothemycin: (p) Selles, P.; Lett,
R. Tetrahedron Lett. 2002, 43, 4627.
† Columbia University.
‡ Sloan-Kettering Institute for Cancer Research.
(1) Omura, S., Ed. Macrolide Antibiotics: Chemistry, Biology, and Practice,
2nd ed.; Academic Press: San Diego, CA, 2002.
(2) Betina, V. Mycotoxins. Chemical, Biology and EnVironmental Aspects;
Elsevier: Amsterdam, 1989.
(3) For structure and isolation: (a) Aldridge, D. C.; Galt, S.; Giles, D.; Turner,
W. B. J. Chem. Soc. (C) 1971, 1623. (b) Lee, K.-H.; Hayashi, N.; Okano,
M.; Hall, I. H.; Wu, R.-Y.; McPhail, A. T. Phytochemistry 1982, 21, 1119.
(4) For structure and isolation: (a) Stob, M.; Baldwin, R. S.; Tuite, J.; Andrews,
F. N.; Gillette, K. G. Nature 1962, 196, 1318. (b) Urry, W. H.; Wehrmeister,
H. L.; Hodge, E. B.; Hidy, P. H. Tetrahedron Lett. 1966, 3109.
(5) For structure and isolation: (a) Delmotte, P.; Delmotte-Plaquee, J. Nature
1953, 171, 344. (b) Ayer, W. A.; Lee, S. P.; Tsunda, A.; Hiratsuka, Y.
Can. J. Microbiol. 1980, 26, 766.
(6) For structure and isolation: Isaka, M.; Suyarnsestakorn, C.; Tanticharoen,
M.; Kongaseree, P.; Thebtaranonth, Y. J. Org. Chem. 2002, 67, 1561.
(7) For structure and isolation: (a) Nair, M. S. R.; Carey, S. T. Tetrahedron
Lett. 1980, 21, 2001. (b) Nair, M. S. R.; Carey, S. T.; James, J. C.
Tetrahedron 1981, 37, 2445. (c) Agatsuma, T.; Takahashi, A.; Kabuto, C.;
Nozoe, S. Chem. Pharm. Bull. 1993, 41, 373.
(9) Danishefsky, S. J.; Etheridge, S. J. J. Org. Chem. 1979, 44, 4716.
(10) Danishefsky, S.; Yan, C.-F.; Singh, R. K.; Gammill, R. B.; McCurry, P.
M.; Fritsch, N.; Clardy, J. J. Am. Chem. Soc. 1979, 101, 7001.
9
10.1021/ja064270e CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 14185-14191
14185