X. Zhu / Tetrahedron Letters 47 (2006) 7935–7938
7937
References and notes
OAc
O
OAc
AcO
AcO
AcO
AcO
AcO
AcO
O
MMTrCl, Py
84%
1. (a) Driguez, H. ChemBioChem. 2001, 2, 311–318; (b) Jahn,
M.; Marles, J.; Warren, R. A. J.; Withers, S. G. Angew.
Chem., Int. Ed. 2003, 42, 352–354; (c) Uhrig, M. L.;
Manzano, V. E.; Varela, O. Eur. J. Org. Chem. 2006, 162–
168.
2
SH
1
SMMTr
68%
i. NaOMe, MeOH
(2 steps) ii. TBDPSCl, Py
2. Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106,
160–187.
3. MacDougall, J. M.; Zhang, X. D.; Polgar, W. E.;
Khroyan, T. V.; Toll, L.; Cashman, J. R. J. Med. Chem.
2004, 47, 5809–5815.
O
O
OH
O
TBDPSO
HO
Me2C(OMe)2
TBDPSO
p-TsOH, CH3CN
HO
HO
O
95%
4
SMMTr
3
SMMTr
4. (a) Rich, J. R.; Bundle, D. R. Org. Lett. 2004, 6, 897–900;
(b) Bundle, D. R.; Rich, J. R.; Jacques, S.; Yu, H. N.;
Nitz, M.; Ling, C. C. Angew. Chem., Int. Ed. 2005, 44,
7725–7729.
Ac2O, Py
99%
5. For one example, see: Zhu, X.; Pachamuthu, K.; Schmidt,
R. R. J. Org. Chem. 2003, 68, 5641–5651.
6. Cerny´, M.; Vrkocˇ, J.; Staneˇk, J. Collect. Czech. Chem.
O
O
O
O
TBDPSO
AcO
TFA, TESH
CH2Cl2
TBDPSO
AcO
ˇ
O
O
84%
Commun. 1959, 24, 64–69.
SMMTr
SH
11
18
7. For one very recent procedure for the synthesis of glycosyl
thiols, see: Bernardes, G. J. L.; Gamblin, D. P.; Davis,
B. G. Angew. Chem., Int. Ed. 2006, 45, 4007–4011.
8. For some recent examples, see: (a) Zhu, X.; Schmidt, R. R.
Scheme 1. An example of MMTr as an S-protecting group for the
synthesis of glycosyl thiols. Synthesis of mannosyl thiol 18.
´
Chem. Eur. J. 2004, 10, 875–887; (b) Galonic, D. P.; van der
Donk, W. A.; Gin, D. Y. Chem. Eur. J. 2003, 9, 5997–6006;
´
(c) Galonic, D. P.; van der Donk, W. A.; Gin, D. Y. J. Am.
Next, we examined the deprotection of the MMTr
group on the above compounds 5–11. It is well known
that the removal of trityl-type protecting groups, such
as Tr, MMTr, and DMTr, from sulfur is reversible
due to the high stability of the trityl cation and the
strongly nucleophilic nature of the sulfhydryl group.
As a result, a cation scavenger is usually necessary to
drive the detritylation to completion. After screening
several conditions,20 0.8% trifluoroacetic acid (TFA) in
CH2Cl2 containing 1% triethylsilane (TESH) was chosen
to effect all the deprotections shown in Table 1. All the
reactions were performed at 0 °C. Under these condi-
tions,21 glycosyl thiols 12–18 were obtained in very high
to excellent yields. It is important to note that all the
acid-labile protecting groups present, including benzyl,
benzylidene, silyl, and isopropylidene, which are fre-
quently used in carbohydrate chemistry, were unaf-
fected. Most notably, the benzylidene protecting group
survived the present conditions as indicated by the good
to excellent yields of thiols 15 and 17.
Chem. Soc. 2004, 126, 12712–12713; (d) Thayer, D. A.; Yu,
H. N.; Galan, M. C.; Wong, C. H. Angew. Chem., Int. Ed.
2005, 44, 4596–4599; (e) Avenoza, A.; Busto, J. H.; Jimenez-
´
´
Oses, G.; Peregrina, J. M. Synthesis 2006, 641–644.
9. Taylor, R. J. K.; McAllister, G. D.; Franck, R. W.
Carbohydr. Res. 2006, 341, 1298–1311.
10. Knapp, S.; Darout, E.; Amorelli, B. J. Org. Chem. 2006,
71, 1380–1389.
11. Davis, B. G.; Ward, S. J.; Rendle, P. M. Chem. Commun.
2001, 189–190.
12. Chayajarus, K.; Fairbanks, A. J. Tetrahedron Lett. 2006,
47, 3517–3520.
13. Zhu, X.; Schmidt, R. R. J. Org. Chem. 2004, 69, 1081–
1085.
14. Aversa, M. C.; Barattucci, A.; Bilardo, M. C.; Bonaccorsi,
P.; Giannetto, P.; Rollin, P.; Tatiboue¨t, A. J. Org. Chem.
2005, 70, 7389–7396.
15. Falconer, R. A. Tetrahedron Lett. 2002, 43, 8503–8505.
16. Greffe, L.; Jensen, M. T.; Chang-Pi-Hin, F.; Fruchard, S.;
O’Donohue, M. J.; Svensson, B.; Driguez, H. Chem. Eur.
J. 2002, 8, 5447–5455.
17. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd ed; John Wiley and Sons: New
York, 1999.
In summary, the 4-monomethoxytrityl group has been
employed as a new S-protecting group for the synthesis
of glycosyl thiols, which can be installed conveniently
and cleaved selectively in the presence of other acid-
labile hydroxyl protecting groups. In view of these
attributes, together with the recent use of the more
acid-labile dimethoxytrityl protecting group under
glycosidation conditions,22 the monomethoxytrityl
group described herein may find valuable and versatile
use in thioglycoside chemistry. Its application toward
the synthesis of complex oligosaccharidyl thiols is
currently underway.
18. Haque, M. B.; Roberts, B. P.; Tocher, D. A. J. Chem.
Soc., Perkin Trans. 1 1998, 2881–2890.
19. Typical procedure for the introduction of the MMTr group.
To a solution of the thiol 1 (1.45 g, 3.98 mmol) in dry
pyridine (18 mL) was added MMTrCl (1.36 g, 4.34 mmol).
The resulting mixture was stirred overnight at room
temperature. Pyridine was then removed in vacuo and the
residue was purified by flash column chromatography
(hexane/EtOAc, 3:1) to give the desired tritylated com-
pound 2 (2.13 g, 84%) as a white foam: TLC Rf = 0.29
(hexane/EtOAc, 2:1); [a]D +83.2 (c 0.9, CHCl3); 1H NMR
(400 MHz, CDCl3) d 7.28 (m, 12H, ArH), 6.81 (d,
J = 8.8 Hz, 2H, ArH), 5.29 (dd, J = 3.2, 1.6 Hz, 1H, H-
2), 5.26 (m, 2H, H-3, H-4), 4.82 (d, J = 1.6 Hz, 1H, H-1),
4.28 (m, 2H, H-5, H-6a), 3.93 (dt, J = 10.0, 3.6 Hz, 1H, H-
6b), 3.78 (s, 3H, OMe), 2.11, 2.03, 2.02, 1.97 (4s, 12H, Ac);
13C NMR (100 MHz, CDCl3) d 170.9, 170.0, 169.9, 169.7
(4MeCO), 158.7, 144.7, 144.6, 136.3, 131.3, 130.03, 130.00,
Acknowledgement
X.Z. thanks University College Dublin for financial
support.