of radical-promoting reagents. The proposed intermediate 4a
Whereas ketenimines are known to participate in a variety
of cycloaddition reactions and 6π-electrocyclizations,3 only
a few examples of sigmatropic rearrangements4 and sigma-
tropic shifts of atoms or groups of atoms5 in ketenimines
have been reported so far.
was neither isolated nor detected by following the reaction
1
by H and 13C NMR experiments (toluene-d8, 100 °C, 1.5
h), in which starting 1a and final 3a revealed as the only
components of the reaction mixture.
Following these initial experiments, we examined similar
transformations for a series of acetal-ketenimines 1a-e (X
) O) and dithioacetal-ketenimines 1f-h (X ) S), prepared
from the corresponding 2-azidobenzaldehydes 5 by the
synthetic sequence summarized in Scheme 3, via the azido-
From these latter, the [1,3] sigmatropic shifts of different
electron-rich groups to the central carbon of ketenimines
reported by Wentrup5a-h are the best studied. To our
knowledge, only five cases of [1,5] sigmatropic shifts5m-r
involving ketenimine functions have been reported, four of
them involving a H transfer to their central carbon.5m-p
One of these, also due to Wentrup,5o is closely related to
our present results. It occurs in N-aryl ketenimines bearing
a methyl group at the ortho position, which experience [1,5]
shift of one of the CH3 protons and subsequent 6π-
electrocyclization to 3,4-dihydroquinolines when they were
generated under flash vacuum thermolysis conditions (400-
700 °C). To check if such N-(o-tolyl)ketenimines would also
behave similarly under the mild thermal conditions of the
conversion 1 f 3 we submitted the known ketenimine 86 to
heating in toluene solution at reflux temperature, but after
48 h it still remained unchanged (Scheme 4). After the same
solution was heated in a sealed tube at 180 °C for 24 h
compound 8 was also recovered intact.
Scheme 3. Preparation of 3,4-Dihydroquinolines 3
(2) (a) Hayday, K.; McKelvey, R. D. J. Org. Chem. 1976, 4, 2222. (b)
Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609. (c) Beckwith,
A. L. J.; Easton, C. J. J. Am. Chem. Soc. 1981, 103, 615. (d) Venkateswara,
R. B.; Chan, J. B.; Moskowitz, N.; Fraser-Reid, B. Bull. Soc. Chim. Fr.
1993, 130, 428.
(3) For reviews in the chemistry of ketenimines, see: (a) Krow, D. R.
Angew. Chem., Int. Ed. Engl. 1971, 10, 435. (b) Gambaryan, N. P. Usp.
Khim. 1976, 45, 1251. (c) Dondoni, A. Heterocycles 1980, 14, 1547. (d)
Barker, M. W.; McHenry, W. E. In The Chemistry of Ketenes, Allenes and
Related Compounds; Patai, S., Ed.; Wiley-Interscience: Chichester, UK,
1980; Part 2, p 701. (e) Alajar´ın, M.; Vidal, A.; Tovar, F. Targets Heterocycl.
Syst. 2000, 4, 293.
(4) (a) Brannock, K. C.; Burpitt, R. D. J. Org. Chem. 1965, 30, 2564.
(b) Walters, M. A.; McDonough, C. S.; Brown, P. S., Jr.; Hoem, A. B.
Tetrahedron Lett. 1991, 32, 179. (c) Walters, M. A.; Hoem, A. B.; Arcand,
H. R.; Hegeman, A. D.; McDonough, C. S. Tetrahedron Lett. 1993, 34,
1453. (d) Walters, M. A.; Hoem, A. B. J. Org. Chem. 1994, 59, 2645. (e)
Walters, M. A. J. Am. Chem. Soc. 1994, 116, 11618. (f) Walters, M. A. J.
Org. Chem. 1996, 61, 978. (g) Molina, P.; Alajar´ın, M.; Lo´pez-Leonardo,
C. Tetrahedron Lett. 1991, 32, 4041. (h) Molina, P.; Alajar´ın, M.; Lo´pez-
Leonardo, C.; Alca´ntara, J. Tetrahedron 1993, 49, 5153. (i) Nubbemeyer,
U. Synthesis 1993, 1120.
acetals and dithioacetals 6, their respective iminophospho-
ranes 7, and finally by the aza-Wittig reaction of the latter
with disubstituted ketenes. When toluene solutions of acetal-
ketenimines 1a-e (X ) O) were heated at reflux temperature
for 1 h, the corresponding spiro[1,3-dioxolane-2,4′(3′H)-
quinolines] 3a-e (X ) O), members of a previously
unknown heterocyclic system, were cleanly obtained in fair
to good yields (Table 1). In a similar way, the dithioacetal-
(5) For articles dealing with [1,3] migrations in ketenimines, see: (a)
Cheikh, A. B.; Chuche, J.; Manisse, N.; Pommelet, J. C.; Netsch, K.-P.;
Lorencak, P.; Wentrup, C. J. Org. Chem. 1991, 56, 970. (b) Kappe, C. O.;
Kollenz, G.; Leung-Toung, R.; Wentrup, C. J. Chem. Soc., Chem. Commun.
1992, 487. (c) Kappe, C. O.; Kollenz, G.; Netsch, K.-P.; Leung-Toung, R.;
Wentrup, C. J. Chem. Soc., Chem. Commun. 1992, 488. (d) Fulloon, B.;
El-Nabi, H. A. A.; Kollenz, G.; Wentrup, C. Tetrahedron Lett. 1995, 36,
6547. (e) Fulloon, B. E.; Wentrup, C. J. Org. Chem. 1996, 61, 1363. (f)
Ramana Rao, V. V.; Wentrup, C. J. Chem. Soc., Perkin Trans. 1 1998,
2583. (g) Wentrup, C.; Ramana, Rao, V. V.; Frank, W.; Fulloon, B. E.;
Moloney, D. W. J.; Mosandl, T. J. Org. Chem. 1999, 64, 3608. (h) Finnerty,
J. J.; Wentrup, C. J. Org. Chem. 2004, 69, 1909. (i) Aumann, R.; Heinen,
H. Chem. Ber. 1988, 121, 1739. (j) Clarke, D.; Mares, R. W.; McNab, H.
J. Chem. Soc. Chem. Commun. 1993, 1026. (k) Clarke, D.; Mares, R. W.;
McNab, H. J. Chem. Soc., Perkin Trans. 1 1997, 1799. (l) Amsallem, D.;
Mazie`res, S.; Piquet-Faure´, V.; Gornitzka, H.; Baceiredo, A.; Bertrand G.
Chem. Eur. J. 2002, 8, 5306. For articles dealing with [1,5] migrations in
ketenimines, see: (m) Goerdeler, J.; Lindner, C.; Zander, F. Chem. Ber.
1981, 114, 536. (n) Morel, G.; Marchand, E.; Foucaud, A. J. Org. Chem.
1985, 50, 771. (o) Ramana, Rao, V. V.; Fulloon, B. E.; Bernhardt, P. V.;
Koch, R.; Wentrup, C. J. Org. Chem. 1998, 63, 5779. (p). Alajar´ın, M.;
Vidal, A.; Ort´ın, M.-M. Tetrahedron 2005, 61, 7613. (q) Alajar´ın, M.; Ort´ın,
M.-M.; Sa´nchez-Andrada, P.; Vidal, A.; Bautista, D. Org. Lett. 2005, 7,
5281. (r) Alajar´ın, M.; Ort´ın, M.-M.; Sa´nchez-Andrada, P.; Vidal, A. J.
Org. Chem. 2006, 71, 8126-8139.
Table 1. Quinolines 3
compd
X
R1
R2
R3
yield (%)
3a
3b
3c
3d
3e
3f
O
O
O
O
O
S
H
H
CH3
Cl
H
H
H
H
H
CH3
H
H
Ph
CH3
Ph
Ph
Ph
Ph
CH3
Ph
70
58
68
68
67
74
52
77
H
3g
3h
S
S
H
Cl
H
ketenimines 1f-h (X ) S) were converted into the spiro-
heterocycles 3f-h (X ) S), although with the remarkable
difference of requiring longer reaction times (16 h in
refluxing toluene).
(6) Stevens, C. L.; Singhal, G. H. J. Org. Chem. 1964, 29, 34.
5646
Org. Lett., Vol. 8, No. 24, 2006