G. Sabitha et al. / Tetrahedron Letters 47 (2006) 8179–8181
8181
7. Winter, M.; Malet, G.; Pfeiffner, M.; Demole, E. Helv.
Chim. Acta 1962, 45, 1250–1255.
8. Dubs, P.; Stussi, R. Helv. Chim. Acta 1978, 61, 998–1003.
9. (a) Fehr, C.; Galindo, J.; Ohloff, G. Helv. Chim. Acta
1981, 64, 1247–1256; (b) de Clercq, P.; Mijngheer, R. Bull.
Soc. Chim. Belg. 1978, 87, 495.
10. (a) Demole, E.; Winter, M. Helv. Chim. Acta 1962, 45,
1256; (b) Kondo, K.; Saito, E.; sunemoto, D. Tetrahedron
Lett. 1975, 2275–2278; (c) Utaka, M.; Kuriki, H.; Sakai,
T.; Takeda, A. J. Org. Chem. 1986, 51, 935–938.
11. Kiyota, H.; Higashi, E.; Koike, T.; Oritani, T. Flavour
Frag. J. 2001, 16, 175–179.
12. Valim, M. F.; Rouseff, R. L.; Lin, J. J. Agric. Food Chem.
2003, 51, 1010–1015.
13. Nohira, H.; Mizuguchi, K.; Murata, T.; Yazaki, Y.;
Kanazawa, M.; Aoki, Y.; Nohira, M. Heterocycles 2000,
52, 1359–1370.
14. Blaser, F.; Deschenaux, P.-F.; Kallimopoulos, T.; Jacot-
Gulliarmod, A. Helv. Chim. Acta 1991, 74, 787–790.
15. (a) Sabitha, G.; Sudhakar, K.; Reddy, N. M.; Rajkumar,
M.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 6567–6570;
(b) Sabitha, G.; Bhikshapathi, M.; Yadav, J. S. Synth.
Commun., in press.
bromide to afford alkylated compound 5 in 68% yield.
The secondary hydroxyl group in compound 5 was silyl-
ated using TBDMSCl and imidazole in DCM to afford
8 in 89% yield. After removal of the PMB group with
DDQ,17 the alcohol 9 was oxidized to the corresponding
aldehyde 10. Aldehyde 10 was immediately subjected to
Still–Gennari modification of the Horner–Emmons
reaction,18 to furnish Z-unsaturated carboxylic ester 11
in 82% yield. The cyclization of ester was achieved by
treating with p-TSA in methanol to afford 4 by in situ
deprotection of TBDMS group. This key intermediate
was utilized for the synthesis of three target molecules
(Scheme 3).19 Thus, partial hydrogenation of the triple
bond in compound 4 over Lindlar’s catalyst afforded
tuberolactone 1 in 88% yield. Whereas, treatment of 4
with excess Lindlar’s catalyst in EtOAc, quinoline for
12 h yielded jasmine lactone 2 in 38% yield and hydro-
genation of triple and endocyclic double bonds in the
presence of 10% Pd/C in EtOAc furnished d-decalactone
3 in 87% yield.
16. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga,
M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.;
Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.
17. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.;
Yonemitsu, O. Tetrahedron 1986, 42, 3021–3028.
18. (a) Annunziata, R.; Cinquini, M.; Cozzi, F.; Dondio, G.;
Raimondi, L. Tetrahedron 1987, 43, 2369–2387; (b) Still,
W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408.
19. (6S)-6-(2-Pentynyl)-5,6-dihydro-2H-2-pyranone 4: yellow
In conclusion, the first asymmetric total synthesis of
tuberolactone, jasmine lactone and d-decalactone has
been accomplished in eight steps from the same starting
material. The selective hydrogenations are the key steps
involved in the synthesis of these fragrant d-lactones.
Acknowledgments
25
liquid, ½aꢁD ꢀ39.32 (c 1, CHCl3); IR (neat): 2975, 2925,
1726, 1427, 1386, 1246, 1148, 1049 cmꢀ1 1H NMR
;
V.B. thank UGC, New Delhi, for the award of a
Fellowship.
(300 MHz, CDCl3): d 1.16 (t, J = 7.5 Hz, 3H), 2.12–2.25
(m, 2H), 2.40–2.76 (m, 2H), 4.44–4.56 (br s, 1H, CH–O),
6.04 (dd, J = 9.8, 1.5 Hz, 1H), 6.85–6.94 (m, 1H, CH@C–
C@O); 13C NMR (50 MHz, CDCl3): d 163.5, 144.7, 120.8,
84.9, 76.4, 75.6, 72.9, 27.9, 24.7, 13.7, 12.0; LCMS: m/z
165 (M+1); HRMS: m/z 170.226 (calcd for C10H18O2,
170.250).
References and notes
1. (a) Siegel, S. M. Phytochemistry 1976, 15, 566–567; (b)
Ohloff, G. Fort. Chem. Org. Nat. 1978, 35, 431–527; (c)
Davies-Coleman, M. T.; Rivett, D. E. A. Fort. Chem. Org.
Nat. 1989, 55, 1–35; (d) Fukusaki, E.; Senda, S.; Naka-
zono, Y.; Omata, T. Tetrahedron 1991, 47, 6223–6230; (e)
Mori, K. Tetrahedron 1989, 45, 3233–3298; (f) Fujita, T.;
Nishimura, H.; Kaburagi, K.; Mizutani, J. Phytochemistry
1994, 36, 23–27; (g) Nyandat, E.; Rwekika, E.; Galeffi, C.;
Palazzino, G.; Nicoletti, M. Phytochemistry 1993, 33,
1493–1496; (h) Andrianaivoravelona, J. O.; Sahpaz, S.;
Terreaux, C.; Hostettmann, K.; Stoeckli-Evans, H.; Ras-
olondramanitra, J. Phytochemistry 1999, 52, 265–269; (i)
Pereda-Miranda, R.; Garcia, M.; Delgado, G. Phytochem-
istry 1990, 29, 2971–2974.
25
(6R)-Tuberolactone 1: clear colorless liquid; ½aꢁD ꢀ30.16
(c 1, CHCl3); IR (neat): 2964, 3015, 1725, 1635, 1386,
1247, 1150, 1048, 815 cmꢀ1; 1H NMR (400 MHz, CDCl3):
d 0.97 (t, J = 7.78 Hz, 3H), 2.02–2.57 (m, 6H), 4.36–4.44
(m, 1H, CH–O), 5.30–5.39 (m, 1H, CH@CH), 5.50–5.58
(m, 1H, CH@CH), 5.98 (dt, J = 9.30, 2.34 Hz, 1H, @CH–
C@O), 6.82 (m, 1H, CH@C–C@O); 13C NMR (75 MHz,
CDCl3):d 164.2, 144.8, 135.4, 122.0, 121.3, 76.6, 37.8, 32.3,
29.6, 28.6, 20.6, 13.9; LCMS: m/z 189 (M+Na); HRMS:
m/z 164.167 (calcd for C10H12O2, 164.203).
25
(6S)-Jasmine lactone 2: colorless liquid; ½aꢁD +18.9 (c 1,
CHCl3), lit.13 +17.6 (c 0.38 CHCl3); IR (neat): 2959, 1729,
1
1453, 1415, 1302, 1148, 1110, 1046, 906 cmꢀ1; H NMR
(200 MHz, CDCl3): d 0.99 (t, J = 7.0 Hz, 3H), 1.42–2.68
(m, 10H), 4.16–4.36 (br s, 1H, CH–O), 5.25–5.63 (m, 2H,
CH@CH); 13C NMR (75 MHz, CDCl3): d 171.8, 135.1,
122.3, 76.6, 33.3, 29.6, 29.4, 27.2, 20.7, 14.0; LCMS: m/z
191 (M+Na); HRMS: m/z 166.201 (calcd for C10H14O2,
166.219).
2. Nicolaou, K. C.; Rodriguez, R. M.; Mitchell, H. J.;
Suzuki, H.; Fylaktakidou, K. C.; Baudoin, O.; van Delft,
F. L. Chem. Eur. J. 2000, 6, 3095–3115.
3. (a) Jodynis-Liebert, J.; Murias, M.; Bloszyk, E. Planta
Med. 2000, 66, 199–205; (b) Drewes, S. E.; Schlapelo, B.
M.; Horn, M. M.; Scott-Shaw, R.; Sandor, O. Phyto-
chemistry 1995, 38, 1427–1430.
4. Kraft, P.; Bajgrowicz, J. A.; Devis, C.; Frater, G. Angew.
Chem., Int. Ed. 2000, 39, 2980–3010.
5. Kaiser, R.; Lamparsky, D. Tetrahedron Lett. 1976, 1659–
1661.
25
(R)-d-Decalactone 3: colorless liquid; ½aꢁD +52.2 (c 1,
CHCl3), lit.13 +56.7 (c 1.79 CHCl3); IR (neat): 2931, 2861,
1736, 1463, 1379, 1340, 1243, 1184, 1118, 1036, 930; 1H
NMR (200 MHz, CDCl3): d 0. 90 (t, J = 6.80 Hz, 3H),
1.21–2.62 (m, 14H), 4.19–4.30 (br s, 1H, CH–O); 13C
NMR (75 MHz, CDCl3): d 172.0, 80.5, 31.4, 29.3, 27.6,
24.4, 22.3, 18.3, 13.8; LCMS: m/z 193, (M+Na); HRMS:
m/z 168.197 (calcd for C10H16O2, 168.234).
6. Bourdineaud, J.-P.; Ehret, C.; Petrzilka, M. Optically
Active Lactones. World Patent, WO/94107887, April 19,
1994.