Published on Web 11/10/2006
Immobilization of Ligands with Precise Control of Density to
Electroactive Surfaces
Eugene W. L. Chan and Muhammad N. Yousaf*
Contribution from the Department of Chemistry and Carolina Center for Genome Science,
UniVersity of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
Received August 24, 2006; E-mail: mnyousaf@email.unc.edu
Abstract: We report a broadly applicable surface chemistry methodology to immobilize ligands, proteins,
and cells to an electroactive substrate with precise control of ligand density. This strategy is based on the
coupling of soluble aminooxy terminated ligands with an electroactive quinone terminated monolayer. The
surface chemistry product oxime is also redox active but at a different potential and therefore allows for
real-time monitoring of the immobilization reaction. Only the quinone form of the immobilized redox pair
is reactive with soluble aminooxy groups, which allows for the determination of the yield of reaction, the
ability to immobilize multiple ligands at controlled densities, and the in-situ modulation of ligand activity.
We demonstrate this methodology by using cyclic voltammetry to characterize the kinetics of a model
interfacial reaction with aminooxy acetic acid. We also demonstrate the synthetic flexibility and utility of
this method for biospecific interactions by installing aminooxy terminated FLAG peptides and characterizing
their binding to soluble anti-FLAG with surface plasmon resonance spectroscopy. We further show this
methodology is compatible with microarray technology by printing rhodamine-oxyamine in various size
spots and characterizing the yield within the spots by cyclic voltammetry. We also show this methodology
is compatible with cell culture conditions and fluorescent microscopy technology for cell biological studies.
Arraying RGD-oxyamine peptides on these substrates allows for bio-specific adhesion of Swiss 3T3
Fibroblasts.
Michael addition,16,17 and other chemoselective ligation strate-
gies.18 However, to extend the utility of these surfaces to
Introduction
Strategies to immobilize biomolecules onto solid supports is
important for a wide variety of applications ranging from the
development of small molecule and protein microarrays to
model substrates for mechanistic studies of cell behavior.1-5
There have been several immobilization methods developed to
tailor surfaces for a variety of diagnostic and high-throughput
assays. The most common conjugation methods employ radical,
mediatedphotoimmobilization,6acid-basechemistry,7-9Staudinger
ligation,10-12 Click chemistry,13,14 Diels-Alder reaction,15
generate new types of biosensors and to study complex
biological processes, it is necessary to develop substrates with
more sophisticated and flexible surface properties. Surfaces for
these applications would require the precise control of ligand
density, the ability to immobilize multiple ligands, and the in-
situ modulation of ligand activity. For cell biological applica-
tions, the ability to precisely control low density of ligands is
particularly important. The key criteria to successfully preparing
these types of substrates rely on the surface to resist nonspecific
protein adsorption, the selective chemistry for ligand im-
mobilization, and the nature of the underlying substrate for
spectroscopic characterization of its interactions with biomol-
ecules.
(1) Tomizaki, K. Y.; Usui, K.; Mihara, H. Chem. Bio. Chem. 2005, 6, 783-
799.
(2) Schutkowski, M.; Reineke, U.; Reimer, U. Chem. Bio. Chem. 2005, 6, 513-
521.
(3) Min, D. H.; Mrksich, M. Curr. Op. Chem. Biol. 2004, 8, 554-558.
(4) Mrksich, M. Chem. Soc. ReV. 2000, 29, 267-273.
(5) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760-1763.
(6) Herbert, C. B.; McLernon, T. L.; Hypolite, C. L.; Adams, D. N.; Pikus,
L.; Huang, C. C.; Fields, G. B.; Letourneau, P. C.; Distefano, M. D.; Hu,
W.-S. Chem. Biol. 1997, 4, 731-737.
Our strategy utilizes the unique chemical properties of an
immobilized p-benzoquinone on a conductive surface. This
redox-active molecule provides many desirable features for
bioconjugation of molecules to surfaces. For example, the
quinone molecule reacts in high yield with a number of
(7) Peelen, D.; Smith, L. M. Langmuir 2005, 21, 266-271.
(8) Barnes-Seeman, D.; Park, S. B.; Koehler, A. N.; Schreiber, S. L. Angew.
Chem., Int. Ed. 2003, 42, 2376-2379.
(9) Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G. M. Anal. Chem. 1999, 71,
777-790.
(10) Watzke, A.; Kohn, M.; Gutierrez-Rodriguez, M.; Wacker, R.; Schroder,
H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov. K.; Niemeyer, C. M.; Goody,
R. S.; Waldmann, H. Angew. Chem., Int. Ed. 2006, 45, 1408-1412.
(11) Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J. Am. Chem.
Soc. 2003, 125, 11790-11791.
(14) Collman, J. P.; Devaraj, N. K.; Eberspacher, T. P. A.; Chidsey, C. E. D.
Langmuir 2006, 22, 2457-2464.
(15) Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M. Nature Biotech.
2002, 20, 270-274.
(12) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 19-24.
(16) Houseman, B. T.; Gawalt, E. S.; Mrksich, M. Langmuir 2003, 19, 1522-
1531.
(13) Lin, P. C.; Ueng, S. H.; Tseng, M. C.; Ko, K. T.; Huang, K. T.; Yu, S. C.;
Adak, A. K.; Chen, Y. J.; Lin, C. C. Angew. Chem., Int. Ed. 2006, 45,
4286-4290.
(17) Wegner, G. J.; Lee, H. J.; Corn, R. M. Anal. Chem. 2002, 74, 5161-5168.
(18) Camarero, J. A.; Kwon, Y.; Coleman, M. A. J. Am. Chem. Soc. 2004, 126,
14730-14731.
9
15542
J. AM. CHEM. SOC. 2006, 128, 15542-15546
10.1021/ja065828l CCC: $33.50 © 2006 American Chemical Society