LETTER
Synthesis of (20S)-Camptothecin DE Ring System
Hiroya, K.; Sakamoto, T. Chem. Lett. 2004, 33, 1026.
(d) Hiroya, K.; Itoh, S.; Sakamoto, T. Tetrahedron 2005, 61,
10958. (e) Hiroya, K.; Matsumoto, S.; Ashikawa, M.; Kida,
H.; Sakamoto, T. Tetrahedron 2005, 61, 12330.
(f) Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.;
Sakamoto, T. Chem. Pharm. Bull. 2005, 53, 1502.
(8) Hiroya, K.; Jouka, R.; Katoh, O.; Sakuma, T.; Anzai, M.;
Sakamoto, T. Arkivoc 2003, (viii), 232.
(9) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.;
McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88,
3888.
2639
(20c: X = MeO, 72% ee vs 20d:21 X = EtO, 52% ee), and
the rigid acetal group caused a serious depression of ee
(20e:21 X = OCH2CH2O, 20% ee). These results suggest-
ed that chelation between the oxygen atom in the substrate
and the reagent (acetal and oxaziridine) is essential for the
high selectivity. Presumably the methyl group in the
acetal moiety is the optimum size, when the reagent and
the substrate form the complex by chelation. Groups that
are bigger or rigid might prevent proper complexation.
Finally, (S)-21 was recrystallized from benzene (91% ee
and 66% yield from 19), and the benzyl group was re-
moved by standard hydrogenolysis conditions to com-
plete the synthesis of the DE ring system of (20S)-
camptothecin (S)-6. All the spectral data were identical to
those reported17 and the specific rotation after recrystalli-
zation {[a]D18+131.1 (c 0.2, CHCl3–MeOH, 4:1), 95%
ee23} was reasonable in comparison with the previously
(10) Camptothecin had been isolated from other sources, see:
(a) Das, B.; Madhusudhan, P.; Reddy, P. V.; Anitha, Y.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2001, 40, 453. (b) Kitajima, M.; Yoshida, S.; Yamagata, K.;
Nakamura, M.; Takayama, H.; Saito, K.; Seki, H.; Aimi, N.
Tetrahedron 2002, 58, 9169. (c) Puri, S. C.; Verma, V.;
Amna, T.; Qazi, G. N.; Spiteller, M. J. Nat. Prod. 2005, 68,
1717.
(11) Stork, G.; Schultz, A. G. J. Am. Chem. Soc. 1971, 93, 4074.
(12) Corey, E. J.; Crouse, D. N.; Anderson, J. E. J. Org. Chem.
1975, 40, 2140.
(13) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S.; Liu, L. F. J. Biol.
Chem. 1985, 260, 14873.
(14) For reviews on the synthesis of camptothecin and its
analogues, see: (a) Du, W. Tetrahedron 2003, 59, 8649.
(b) Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Bioorg. Med.
Chem. 2004, 12, 1585.
(15) For the synthesis of camptothecin since the publications of
ref. 14, see: (a) Twin, H.; Batey, R. A. Org. Lett. 2004, 6,
4913. (b) Chavan, S. P.; Pasupathy, K.; Venkatraman, M. S.;
Kale, R. R. Tetrahedron Lett. 2004, 45, 6879. (c) Yu, J. R.;
DePue, J.; Kronenthal, D. Tetrahedron Lett. 2004, 45, 7247.
(d) Chavan, S. P.; Venkatraman, M. S. Arkivoc 2005, (iii),
165. (e) Anderson, R. J.; Raolji, G. B.; Kanazawa, A.;
Greene, A. E. Org. Lett. 2005, 7, 2989.
23
reported data {Lit.16 [a]D +117.0° (c 0.3, CHCl3–
MeOH, 4:1), 93% ee; Scheme 3}.
In conclusion, we have demonstrated the straightforward
synthesis of the DE ring system of (20S)-camptothecin
from cheap and commercially available nicotinic acid in
six steps. The clarification of the reaction mechanism,
especially with regard to diastereoselectivity, is underway
in our laboratory.
O
O
O
O
O
O
HO
HO
H2, Pd(OH)2/C
EtOH, 50 °C, 3 h
N
(16) Comins, D. L.; Nolan, J. M. Org. Lett. 2001, 3, 4255.
(17) Peters, R.; Althaus, M.; Nagy, A.-L. Org. Biomol. Chem.
2006, 4, 498.
N
H
77% chemical yield
95% ee
Bn
(S)-21
(S)-6
(18) Shi, X.-X.; Dai, L.-X. J. Org. Chem. 1993, 58, 4596.
(19) Tagami, K.; Nakazawa, N.; Sano, S.; Nagao, Y.
Heterocycles 2000, 53, 771.
Scheme 3 Synthesis of the DE ring system of (20S)-camptothecin
(S)-6.
(20) (a) Towson, J. C.; Weismiller, M. C.; Lal, G. S.; Sheppard,
A. C.; Kumar, A.; Davis, F. A. Org. Synth. 1990, 69, 158.
(b) Davis, F. A.; Weismiller, M. C. J. Org. Chem. 1990, 55,
3715. (c) Davis, F. A.; Kumar, A.; Chen, B.-C. Tetrahedron
Lett. 1991, 32, 867. (d) Davis, F. A.; Weismiller, M. C.;
Murphy, C. K.; Reddy, R. T.; Chen, B.-C. J. Org. Chem.
1992, 57, 7274. (e) Chen, B.-C.; Murphy, C. K.; Kumar, A.;
Reddy, R. T.; Clark, C.; Zhou, P.; Lewis, B. M.; Gala, D.;
Mergelsberg, I.; Scherer, D.; Buckley, J.; DiBenedetto, D.;
Davis, F. A. Org. Synth. 1996, 73, 159.
References and Notes
(1) (a) Kumar, R.; Chandra, R. In Advances in Heterocyclic
Chemistry, Vol. 78; Katritzky, A. R., Ed.; Academic Press:
San Diego, 2001, 269. (b) Lavilla, R. J. Chem. Soc., Perkin
Trans. 1 2002, 1141.
(2) Comins, D. L.; Joseph, S. P. In Comprehensive Heterocyclic
Chemistry II, Vol. 5; Katritzky, A. R.; Rees, C. W.; Scriven,
E. F. V., Eds.; Pergamon: Oxford, 1996, 37.
(3) (a) Kuethe, J. T.; Comins, D. L. J. Org. Chem. 2004, 69,
5219. (b) Comins, D. L.; Sahn, J. J. Org. Lett. 2005, 7, 5227;
and references cited therein.
(4) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H.
Tetrahedron 1992, 48, 9111.
(5) (a) Posner, G. H.; Switzer, C. J. Org. Chem. 1987, 52, 1642.
(b) Posner, G. H.; Vinader, V.; Afarinkia, K. J. Org. Chem.
1992, 57, 4088. (c) Afarinkia, K.; Mahmood, F.
Tetrahedron Lett. 1998, 39, 493; and references cited
therein.
(6) Kuethe, J. T.; Comins, D. L. Org. Lett. 1999, 1, 1031.
(7) (a) Hiroya, K.; Jouka, R.; Kameda, M.; Yasuhara, A.;
Sakamoto, T. Tetrahedron 2001, 57, 9697. (b) Hiroya, K.;
Matsumoto, S.; Sakamoto, T. Org. Lett. 2004, 6, 2953.
(c) Inamoto, K.; Katsuno, M.; Yoshino, T.; Suzuki, I.;
(21) (a) Verfürth, U.; Herrmann, R. J. Chem. Soc., Perkin Trans.
1 1990, 2919. (b) Page, P. C. B.; Heer, J. P.; Bethell, D.;
Lund, A.; Collington, E. W.; Andrews, D. M. J. Org. Chem.
1997, 62, 6093.
(22) Asymmetric Hydroxylation of 19 by 20c (Table 3, entry
3): KHMDS (0.79 mL, 0.59 mmol, 0.75 M solution in
toluene) was slowly added to a solution of 19 (152 mg, 0.536
mmol) in anhyd THF (6.0 mL) at –78 °C. After stirring for
30 min, a solution of 20c (240 mg, 0.829 mmol) in anhyd
THF (6.0 mL) was slowly added to the reaction mixture at
–78 °C and stirred for 5 h at the same temperature. A sat. aq
solution of NH4Cl and THF were added successively to the
mixture and the dry ice–acetone bath was removed. H2O was
added to the mixture and the aqueous phase was extracted
with EtOAc. The combined organic solution was washed
Synlett 2006, No. 16, 2636–2640 © Thieme Stuttgart · New York