2668
K. Sung et al.
LETTER
(7) (a) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W.
H. J. Am. Chem. Soc. 1992, 114, 10646. (b) Kerr, J. M.;
Banville, S. C.; Zuckermann, R. N. J. Am. Chem. Soc. 1993,
115, 2529. (c) Karle, I. L.; Rao, R. B.; Prasad, S.; Kaul, R.;
Balaram, P. J. Am. Chem. Soc. 1994, 116, 10355.
(d) Cornish, V. W.; Mendel, D.; Schultz, P. G. Angew.
Chem., Int. Ed. Engl. 1995, 34, 621. (e) Voyer, N.;
Lamothe, J. Tetrahedron 1995, 51, 9241.
Table 1 Syntheses of Dipeptides 1a–e by the U-4CR Reactions,
Followed by Photochemical Cleavage of 2-Nitrobenzyl Group
(Scheme 2)
R1
R2
R3
Product (yield)
1a (93%)
Ph
i-Pr
p-MeC4H6
m-BrC6H4
c-Hex
n-Pr
m-BrC6H4
Ph
1b (84%)
1c (89%)
(8) (a) Ugi, I.; Steinbruckner, C. Chem. Ber. 1961, 94, 2797.
(b) Keating, T. A.; Armstrong, R. W. J. Org. Chem. 1998,
63, 867.
Ph
(9) (a) Kazmaier, U.; Hebach, C. Synlett 2003, 1591. (b) Pick,
R.; Bauer, M.; Kazmaier, U.; Hebach, C. Synlett 2005, 757.
(10) (a) Ugi, I.; Offermann, K. Chem. Ber. 1964, 97, 2996.
(b) Costa, S. P. G.; Maia, H. I. S.; Pereira-Lima, S. M. M. A.
Org. Biomol. Chem. 2003, 1, 1475.
Boc-NHCH2
Me
i-Pr
c-Hex
1d (68%)
1e (91%)
n-Pr
p-MeC6H4
(11) (a) Urban, R.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1975, 87,
61. (b) Siglmüller, F.; Herrmann, R.; Ugi, I. Tetrahedron
1986, 42, 5931.
functional substituents were used in the U-4CR reactions.
The U-4CR reactions, followed by photochemical cleav-
age of 2-nitrobenzyl group were done in one pot without
isolation of the stable U-4CR products. As shown in
Table 1, they all worked fine with good yields.13
(12) (a) Lehnhoff, S.; Goebel, M.; Karl, R. M.; Klosel, R.; Ugi, I.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1104. (b) Kunz, H.;
Pfrengle, W. J. Am. Chem. Soc. 1988, 110, 651. (c) Kunz,
H.; Pfrengle, W.; Sager, W. Tetrahedron Lett. 1989, 30,
4109. (d) Linderman, R. J.; Sophie, B.; Samantha, R. P. J.
Org. Chem. 1999, 64, 336. (e) Ziegler, T.; Kaiser, H.;
Schlomer, R.; Kunz, C. Tetrahedron 1999, 55, 8397.
(f) Oertel, K.; Zech, G.; Koch, H. Angew. Chem. Int. Ed.
2000, 39, 1431.
In conclusion, we successfully modified the U-4CR with
commercially available 2-nitrobenzylamine as the ammo-
nia equivalent. This method can be done in one pot with
high yields.
(13) The general procedure of this method is shown as follows:
An aldehyde component (1 mmol), 2-nitrobenzylamine (1
mmol), and MeOH (5 mL) were mixed in a 10-mL quartz
flask until the mixture became a clear solution. An
isocyanide component (1 mmol) and a carboxylic acid
component (1 mmol) were added into the solution and the
mixture was stirred at r.t. for 2 d. Then the mixture was
irradiated in a quartz flask inside a Rayonet photochemical
reactor with four 254-nm lamps at r.t. The reaction was
monitored by 1H NMR spectroscopy, and the reaction was
complete in 6–13 h. After the reaction was completed,
MeOH was removed by a rotary evaporator, and the residue
was purified by column chromatography to get the
dipeptides 1a–1e.
Acknowledgment
Financial support from the National Science Council of Taiwan
(NSC 94-2113-M-006-009) is gratefully acknowledged.
References and Notes
(1) (a) Ugi, I.; Meyr, R.; Fetzer, U.; Steinbruckner, C. Angew.
Chem. 1959, 71, 386. (b) Ugi, I.; Steinbruckner, C. Angew.
Chem. 1960, 72, 267.
(2) (a) Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3168. (b) Domling, A. Chem. Rev. 2006, 106, 17.
(3) (a) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc.
1996, 118, 2574. (b) Hulme, C.; Peng, J.; Morton, G.;
Salvino, J. M.; Herpin, T.; Labaudiniere, R. Tetrahedron
Lett. 1998, 39, 7227. (c) Kennedy, A. L.; Andrew, M. F.;
Josey, J. A. Org. Lett. 2002, 4, 1167. (d) Cuny, G.; Bois-
Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2004, 126, 14475.
(4) (a) Cheng, F. L.; Waki, M.; Minematsu, Y.; Meienhofer, J.;
Izumiya, N. Chem. Lett. 1979, 823. (b) Lin, Q.; O’Neill, J.
C.; Blackwell, H. E. Org. Lett. 2005, 7, 4455.
1a: Light brown solid; mp 119 °C; yield: 93%. 1H NMR
(CD3OD): d = 0.94 (d, J = 7.6 Hz, CH3, 3 H), 0.96 (d, J = 7.6
Hz, CH3, 3 H), 2.14–2.15 (m, 1 H, CH), 2.20 (s, 3 H, CH3),
4.37 (d, J = 8.4 Hz, CH, 1 H), 7.06 (d, J = 8.2 Hz, PhH, 2 H),
7.44–7.47 (m, 5 H, PhH), 7.84 (d, J = 8.2 Hz, PhH, 2 H). 13
NMR (CDCl3): d = 19.46, 19.74, 20.83, 31.19, 60.81,
120.39, 128.23, 129.00, 129.81, 132.12, 133.55, 134.95,
136.82, 167.98, 171.04. IR (thin film): 1654, 1642 (C=O)
cm–1.
C
(5) (a) Failli, A.; Immer, H.; Gotz, M. Can. J. Chem. 1979, 57,
3257. (b) Bayer, T.; Riemer, C.; Kessler, H. J. Peptide Sci.
2001, 7, 250.
1b: Brown oil; yield: 84%. 1H NMR (CDCl3): d = 0.89 (d,
J = 7.2 Hz, CH3, 3 H), 1.22 (m, 2 H, CH2), 1.27–1.29 (m, 4
H, CH2), 1.55–1.57 (m, 2 H, CH2), 1.67–1.69 (m, 4 H, CH2),
2.18 (t, J = 7.4 Hz, CH2, 2 H), 3.56–3.58 (m, 1 H, CH), 5.37
(s, 1 H, CH), 7.22–7.26 (m, 1 H, PhH), 7.34–7.36 (m, 1 H,
PhH), 7.41–7.43 (m, 1 H, PhH), 7.57 (s, 1 H, PhH). 13C NMR
(CDCl3): d = 16.45, 22.75, 28.51, 28.56, 29.07, 35.95, 36.08,
41.00, 60.39, 125.96, 129.70, 133.84, 134.65, 135.41,
144.43, 173.31, 178.13. IR (thin film): 1649, 1634 (C=O)
cm–1.
(6) (a) Groger, H.; Hatam, M.; Kintscher, J.; Martens, J. Synth.
Commun. 1996, 26, 3383. (b) Domling, A. Nucleosides
Nucleotides 1998, 17, 1667. (c) Domling, A.; Chi, K.-Z.;
Barrere, M. Bioorg. Med. Chem. Lett. 1999, 9, 2871.
(d) Maison, W.; Schlemminger, I.; Westerhoff, O.; Martens,
J. Bioorg. Med. Chem. 2000, 8, 1343. (e) Kvumas Das, B.;
Shibata, N.; Takeuchi, Y. J. Chem. Soc., Perkin Trans. 1
2002, 197. (f) Baldoli, C.; Maiorana, S.; Licandro, E.;
Zinzalla, G.; Perdicchia, D. Org. Lett. 2002, 4, 4314.
(g) Xu, P.; Zhang, T.; Wang, W.; Zou, X.; Zhang, X.; Fu, Y.
Synthesis 2003, 1171. (h) Baldoli, C.; Gianmimi, C.;
Licandro, E.; Maiorana, S.; Zinzalla, G. Synlett 2004, 1044.
1c: Red brown oil; yield: 89%. 1H NMR (CDCl3): d = 1.22–
1.27 (m, 4 H, CH2), 1.27–1.29 (m, 2 H, CH2), 1.66–1.70 (m,
4 H, CH2), 3.67–3.69 (m, 1 H, CH), 5.63 (s, 1 H, CH), 7.36–
7.39 (m, 3 H, PhH), 7.49 (d, 2 H, PhH), 7.63–7.66 (m, 2 H,
PhH), 7.75–7.79 (m, 1 H, PhH), 8.10–8.14 (m, 2 H, PhH).
13C NMR (CDCl3): d = 26.06, 26.12, 26.63, 33.50, 33.66,
Synlett 2006, No. 16, 2667–2669 © Thieme Stuttgart · New York